Skip to content

Commit

Permalink
typo
Browse files Browse the repository at this point in the history
  • Loading branch information
aflaag committed Jan 7, 2024
1 parent 591ff95 commit ccc29f2
Show file tree
Hide file tree
Showing 14 changed files with 113 additions and 116 deletions.
12 changes: 6 additions & 6 deletions html/algoritmi.html
Original file line number Diff line number Diff line change
Expand Up @@ -285,9 +285,9 @@ <h1 class="title"> </h1>
</ul></li>
<li><span class="math inline">r_n \mid d</span>
<ul>
<li><span class="math inline">\left \{ \begin{array}{l} r_{n + 1} = 0 \\
0 \equiv r_{n + 1} \equiv r_{n - 1} \ (\bmod \ r_n) \iff \exists q_n \in
\mathbb{Z} \mid r_{n- 1} = r_nq_n \end{array} \iff r_n \mid r_{n -
<li><span class="math inline">\left \{ \begin{array}{l} r_{n + 1} = 0
\\ 0 \equiv r_{n + 1} \equiv r_{n - 1} \ (\bmod \ r_n) \iff \exists q_n
\in \mathbb{Z} \mid r_{n- 1} = r_nq_n \end{array} \iff r_n \mid r_{n -
1}\right.</span></li>
<li><span class="math inline">r_n \equiv r_{n - 2} \ (\bmod r_{n - 1})
\iff \exists q_{n - 1} \in \mathbb{Z} \mid r_n =r_{n - 1} q_{n - 1} +
Expand Down Expand Up @@ -364,11 +364,11 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">\left \{ \begin{array}{l} (p-1) \mid
\lambda(n) \\ (q - 1) \mid \lambda(n) \end{array} \right. \implies
\exists i, j \in \mathbb{Z} \mid \lambda(n) = (p-1) \cdot i = (q - 1)
\exists i, j \in \mathbb{Z} \mid \lambda(n) = (p-1) \cdot i = (q - 1)
\cdot j</span></li>
<li><span class="math inline">\textrm{MCD}(m, n) = 1 \implies p \nmid m
\land q \nmid m \implies \left \{ \begin{array}{l}p \nmid m \implies m^p
\equiv m \iff m^{p-1} \equiv 1 \implies m^{\lambda(n)} \equiv
\equiv m \iff m^{p-1} \equiv 1 \implies m^{\lambda(n)} \equiv
m^{(p-1)\cdot i} \equiv 1 \ (\bmod \ p) \\ q \nmid m \implies m^q \equiv
m \iff m^{q-1} \equiv 1 \implies m^{\lambda(n)} \equiv m^{(q-1)\cdot j}
\equiv 1 \ (\bmod \ q) \end{array} \right. \iff m^{\lambda(n)} \equiv 1
Expand Down Expand Up @@ -407,7 +407,7 @@ <h1 class="title"> </h1>
<li><strong>Alg</strong>
<ul>
<li><span class="math inline">\forall i \in [0, n] \quad p_i(x) :=
\displaystyle \prod_{\begin{subarray}{c}0 \le j \le n \\ i \neq\ j
\displaystyle \prod_{\begin{subarray}{c}0 \le j \le n \\ i \neq\ j
\end{subarray}}{\dfrac{x - b_j}{b_i - b_j}}</span></li>
<li><span class="math inline">p(x) := c_0p_0(x) + \ldots + c_n
p_n(x)</span></li>
Expand Down
9 changes: 3 additions & 6 deletions html/coefficienti-binomiali.html
Original file line number Diff line number Diff line change
Expand Up @@ -360,15 +360,12 @@ <h1 class="title"> </h1>
class="math inline">\left[a_{1}\right]^{p}=\left[a_{1}\right]^{p}</span>
per dimostrazione precedente</li>
<li><span class="math inline">n&gt;1
\implies\left(\left[a_{1}\right]+\ldots+\left[a_{n}\right]+\left[a_{n+1}\right]\right)^{p}=
\left[a_{1}\right]^{p}+\ldots+\left[a_{n}\right]^{p}+\left[a_{n+1}\right]^{p}</span>
\implies\left(\left[a_{1}\right]+\ldots+\left[a_{n}\right]+\left[a_{n+1}\right]\right)^{p}= \left[a_{1}\right]^{p}+\ldots+\left[a_{n}\right]^{p}+\left[a_{n+1}\right]^{p}</span>
<ul>
<li>per ipotesi induttiva, <span
class="math inline">\left[a_{1}\right]^{p}+\ldots+\left[a_{n}\right]^{p}+\left[a_{n+1}\right]^{p}=
\left(\left[a_{1}\right]+\ldots+\left[a_{n}\right]\right)^{p}+\left[a_{n+1}\right]^{p}</span></li>
class="math inline">\left[a_{1}\right]^{p}+\ldots+\left[a_{n}\right]^{p}+\left[a_{n+1}\right]^{p}= \left(\left[a_{1}\right]+\ldots+\left[a_{n}\right]\right)^{p}+\left[a_{n+1}\right]^{p}</span></li>
<li>allora, ancora per ipotesi induttiva <span
class="math inline">\left(\left[a_{1}\right]+\ldots+\left[a_{n}\right]\right)^{p}+\left[a_{n+1}\right]^{p}=
\left(\left[a_{1}\right]+\ldots+\left[a_{n+1}\right]\right)^{p}</span></li>
class="math inline">\left(\left[a_{1}\right]+\ldots+\left[a_{n}\right]\right)^{p}+\left[a_{n+1}\right]^{p}= \left(\left[a_{1}\right]+\ldots+\left[a_{n+1}\right]\right)^{p}</span></li>
</ul></li>
</ul></li>
</ul>
Expand Down
32 changes: 16 additions & 16 deletions html/determinante.html
Original file line number Diff line number Diff line change
Expand Up @@ -207,7 +207,7 @@ <h1 class="title"> </h1>
\rightarrow W:(v_1, \ldots, v_n) \rightarrow w</span></li>
<li><span class="math inline">f</span> è detta
<strong>multilineare</strong> <span class="math inline">\iff \forall i
\in [1, n], v_1 , \ldots, v_n \in V_1 \times \ldots \times V_n, v_i,
\in [1, n], v_1 , \ldots, v_n \in V_1 \times \ldots \times V_n, v_i,
v_i&#39; \in V_i, \lambda, \mu \in \mathbb{K} \quad f(v_1, \ldots,
\lambda v_i+\mu v_i&#39;, \ldots, v_n) = \lambda f(v_1, \ldots, v_i,
\ldots, v_n) + \mu f(v_1, \ldots, v_i&#39;, \ldots, v_n)</span>
Expand Down Expand Up @@ -316,16 +316,16 @@ <h1 class="title"> </h1>
class="math inline">\det(A_1, \ldots, A_i + A_j, \ldots, A_j + A_i,
\ldots, A_n) = 0</span></li>
<li>allora, per multilinearità di <span class="math inline">\det</span>
si ha che <span class="math inline">\det</span> si ha che <span
class="math inline">0 =\det(A_1, \ldots, A_i + A_j, \ldots, A_j + A_i,
\ldots, A_n) = \det(A_1, \ldots, A_i, \ldots, A_j + A_i, \ldots, A_n) +
\det(A_1, \ldots, A_j, \ldots, A_j + A_i, \ldots, A_n) =\det(A_1,
\ldots, A_i, \ldots, A_j, \ldots, A_n)+\det(A_1, \ldots, A_i, \ldots,
A_i, \ldots, A_n) + \det(A_1, \ldots, A_j, \ldots,A_j, \ldots, A_n) +
\det(A_1, \ldots, A_j, \ldots, A_i, \ldots, A_n) = \det(A_1, \ldots,
A_i, \ldots, A_j, \ldots, A_n) + 0 + 0 + \det(A_1, \ldots, A_j , \ldots,
A_i, \ldots, A_n) \iff \det(A_1, \ldots, A_i, \ldots, A_j, \ldots, A_n)
= -\det(A_1,\ldots, A_j, \ldots, A_i, \ldots, A_n)</span></li>
si ha che <span class="math inline">0 =\det(A_1, \ldots, A_i + A_j,
\ldots, A_j + A_i, \ldots, A_n) = \det(A_1, \ldots, A_i, \ldots, A_j +
A_i, \ldots, A_n) + \det(A_1, \ldots, A_j, \ldots, A_j + A_i, \ldots,
A_n) =\det(A_1, \ldots, A_i, \ldots, A_j, \ldots, A_n)+\det(A_1, \ldots,
A_i, \ldots, A_i, \ldots, A_n) + \det(A_1, \ldots, A_j, \ldots,A_j,
\ldots, A_n) + \det(A_1, \ldots, A_j, \ldots, A_i, \ldots, A_n) =
\det(A_1, \ldots, A_i, \ldots, A_j, \ldots, A_n) + 0 + 0 + \det(A_1,
\ldots, A_j , \ldots, A_i, \ldots, A_n) \iff \det(A_1, \ldots, A_i,
\ldots, A_j, \ldots, A_n) = -\det(A_1,\ldots, A_j, \ldots, A_i, \ldots,
A_n)</span></li>
<li>si noti che la tesi è verificata sia per righe che per colonne, per
definizione di <span class="math inline">\det</span></li>
</ul></li>
Expand Down Expand Up @@ -549,9 +549,9 @@ <h1 class="title"> </h1>
I_n</span></li>
<li>allora <span class="math inline">I_n = A \cdot B = (A \cdot B^1,
\ldots, A \cdot B^n) = (\mathscr{L}_A(B^1), \ldots, \mathscr{L}_A(B^n))
\iff \left \{ \begin{array}{c} \mathscr{L}_A(B^1) = e_1 \\ \vdots \\
\mathscr{L}_A(B^n) = e_n \end{array} \right.\iff e_1, \ldots, e_n \in
\textrm{im}(\mathscr{L}_A) \implies \textrm{span}(e_1, \ldots, e_n)
\iff \left \{ \begin{array}{c} \mathscr{L}_A(B^1) = e_1 \\ \vdots
\\ \mathscr{L}_A(B^n) = e_n \end{array} \right.\iff e_1, \ldots, e_n
\in \textrm{im}(\mathscr{L}_A) \implies \textrm{span}(e_1, \ldots, e_n)
\subseteq \textrm{im}(\mathscr{L}_A)</span></li>
<li><span class="math inline">e_1, \ldots, e_n</span> base canonica di
<span class="math inline">\mathbb{K}^n \implies \dim(\textrm{span}(e_1,
Expand Down Expand Up @@ -889,8 +889,8 @@ <h1 class="title"> </h1>
I_n})</span></li>
<li>allora, per il teorema del rango <span
class="math inline">\textrm{rk}(\mathscr{L}_{A - \lambda \cdot I_n}) = n
- \dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n})) \iff
\dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n})) = n -
- \dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n}))
\iff \dim(\ker(\mathscr{L}_{A - \lambda \cdot I_n})) = n -
\textrm{rk}(\mathscr{L}_{A - \lambda \cdot I_n}) =
\dim(\textrm{E}_\lambda(A)) =: \nu(\lambda)</span></li>
</ul></li>
Expand Down
30 changes: 15 additions & 15 deletions html/everything.html
Original file line number Diff line number Diff line change
Expand Up @@ -984,7 +984,7 @@ <h1 class="title"> </h1>
</ul></li>
<li><strong>Th</strong>
<ul>
<li><span class="math inline">\exists d \in I \mid I = I(d)</span>, o
<li><span class="math inline">\exists d \in I \mid I = I(d)</span>, o
equivalentemente, in <span class="math inline">\mathbb{Z}</span> ogni
ideale è principale</li>
</ul></li>
Expand All @@ -997,7 +997,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">a_{1}, \ldots , a_{n} \in
\mathbb{Z}</span></li>
<li><span class="math inline">\exists !d \in \mathbb{N} \mid
<li><span class="math inline">\exists !d \in \mathbb{N} \mid
I\left(a_{1}, \ldots , a_{n}\right)=I(d)</span>, ed è detto
<strong>massimo comun divisore degli <span class="math inline">a_1,
\ldots, a_n</span></strong>
Expand Down Expand Up @@ -1113,7 +1113,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">a_{1}, \ldots, a_{n} \in
\mathbb{Z}</span></li>
<li><span class="math inline">\displaystyle \exists ! m \in \mathbb{N}
<li><span class="math inline">\displaystyle \exists ! m \in \mathbb{N}
\mid I(m) = I(a_1) \cap \ldots \cap I(a_n) =
\bigcap_{i=1}^{n}{I(a_i)}</span>, ed è detto <strong>minimo comune
multiplo degli <span class="math inline">a_1, \ldots,
Expand Down Expand Up @@ -1178,7 +1178,7 @@ <h1 class="title"> </h1>
commutativo</li>
<li><span class="math inline">I, J \subset A</span> ideali</li>
<li><span class="math inline">I \cdot J = \{i_1 j_1 + \ldots + i_k j_k
\mid k \ge 1, i_1 , \ldots , i_k \in I, j_1 , \ldots , j_k \in J
\mid k \ge 1, i_1 , \ldots , i_k \in I, j_1 , \ldots , j_k \in J
\}</span> è detto <strong>prodotto tra <span
class="math inline">I</span> e <span
class="math inline">J</span></strong></li>
Expand Down Expand Up @@ -1376,7 +1376,7 @@ <h1 class="title"> </h1>
</ul></li>
<li><strong>Th</strong>
<ul>
<li><span class="math inline">x \equiv y \ (\bmod \ d)</span></li>
<li><span class="math inline">x \equiv y \ (\bmod \ d)</span></li>
</ul></li>
</ul>
<a href="#teorema-43"><h2 id="teorema-43">Teorema 43</h2></a>
Expand Down Expand Up @@ -1993,7 +1993,7 @@ <h1 class="title"> </h1>
<li><span class="math inline">\textrm{sgn}(\sigma) :=
(-1)^{|\textrm{Inv}(\sigma)|} =</span><span
class="math inline">\left\{\begin{array}{ll}+1 &amp;
|\operatorname{Inv}(\sigma)| \equiv 0 \ (\bmod \ 2) \\ -1 &amp;
|\operatorname{Inv}(\sigma)| \equiv 0 \ (\bmod \ 2) \\ -1 &amp;
|\operatorname{Inv}(\sigma)| \equiv 1 \ (\bmod \
2)\end{array}\right.</span>
<ul>
Expand Down Expand Up @@ -2769,7 +2769,7 @@ <h1 class="title"> </h1>
</ul></li>
<li><strong>Th</strong>
<ul>
<li><span class="math inline">\exists p(x) \in I \mid I =
<li><span class="math inline">\exists p(x) \in I \mid I =
I(p(x))</span>, o equivalentemente, in <span
class="math inline">\mathbb{K}[x]</span> ogni ideale è principale</li>
</ul></li>
Expand Down Expand Up @@ -4711,7 +4711,7 @@ <h1 class="title"> </h1>
<li><span class="math inline">V(b_0, \ldots, b_n) := \left (
\begin{array}{cccc} b_0^0 &amp; b_0^1 &amp; \cdots &amp; b_0^n \\ b_1^0
&amp; b_1^1 &amp; \cdots &amp; b_1^n \\ \vdots &amp; \ddots &amp; &amp;
\vdots \\\vdots &amp; &amp;\ddots &amp; \vdots \\ b_n^0 &amp; b_n^1
\vdots \\\vdots &amp; &amp;\ddots &amp; \vdots \\ b_n^0 &amp; b_n^1
&amp; \cdots &amp; b_n^n\end{array}\right)</span> è detta
<strong>matrice di Vandermonde a coefficienti <span
class="math inline">b_0, \ldots, b_n</span></strong></li>
Expand Down Expand Up @@ -4748,7 +4748,7 @@ <h1 class="title"> </h1>
\rightarrow W:(v_1, \ldots, v_n) \rightarrow w</span></li>
<li><span class="math inline">f</span> è detta
<strong>multilineare</strong> <span class="math inline">\iff \forall i
\in [1, n], v_1 , \ldots, v_n \in V_1 \times \ldots \times V_n, v_i,
\in [1, n], v_1 , \ldots, v_n \in V_1 \times \ldots \times V_n, v_i,
v_i&#39; \in V_i, \lambda, \mu \in \mathbb{K} \quad f(v_1, \ldots,
\lambda v_i+\mu v_i&#39;, \ldots, v_n) = \lambda f(v_1, \ldots, v_i,
\ldots, v_n) + \mu f(v_1, \ldots, v_i&#39;, \ldots, v_n)</span>
Expand Down Expand Up @@ -5532,7 +5532,7 @@ <h1 class="title"> </h1>
</ul></li>
<li><strong>Th</strong>
<ul>
<li><span class="math inline">z^{n}=|z|^{n} e^{i \theta n} \quad \arg
<li><span class="math inline">z^{n}=|z|^{n} e^{i \theta n} \quad \arg
\left( z^{n} \right)=n \arg (z)</span></li>
</ul></li>
</ul>
Expand Down Expand Up @@ -5793,7 +5793,7 @@ <h1 class="title"> </h1>
<li><strong>Alg</strong>
<ul>
<li><span class="math inline">\forall i \in [0, n] \quad p_i(x) :=
\displaystyle \prod_{\begin{subarray}{c}0 \le j \le n \\ i \neq\ j
\displaystyle \prod_{\begin{subarray}{c}0 \le j \le n \\ i \neq\ j
\end{subarray}}{\dfrac{x - b_j}{b_i - b_j}}</span></li>
<li><span class="math inline">p(x) := c_0p_0(x) + \ldots + c_n
p_n(x)</span></li>
Expand Down Expand Up @@ -5940,9 +5940,9 @@ <h1 class="title"> </h1>
<ul>
<li><strong>Hp</strong>
<ul>
<li><span class="math inline">a_1, \ldots, a_n \ge 2 \in \mathbb{Z} \mid
\textrm{MCD}(a_i, a_j) = 1 \quad \forall i, j \in [1, n] : i \neq
j</span></li>
<li><span class="math inline">a_1, \ldots, a_n \ge 2 \in
\mathbb{Z} \mid \textrm{MCD}(a_i, a_j) = 1 \quad \forall i, j \in [1,
n] : i \neq j</span></li>
<li><span class="math inline">m := \textrm{mcm}(a_1, \ldots,
a_n)</span></li>
</ul></li>
Expand Down Expand Up @@ -5986,7 +5986,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">\exists ! x \ (\bmod \ m) \mid</span>
<span class="math inline">\left\{\begin{array}{c}x \equiv b_{1}\
\left(\bmod \ a_{1}\right) \\ \vdots \\ x \equiv b_{n}\ \left(\bmod \
\left(\bmod \ a_{1}\right) \\ \vdots \\ x \equiv b_{n}\ \left(\bmod \
a_{n}\right)\end{array}\right.</span></li>
</ul></li>
</ul>
Expand Down
4 changes: 2 additions & 2 deletions html/gruppi-e-anelli.html
Original file line number Diff line number Diff line change
Expand Up @@ -929,7 +929,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">0 \in \mathbb{Z} \land g^{0}=e \implies 0
\in I(g)</span></li>
<li><span class="math inline">m, n \in \mathbb{Z} \mid g^{m}=g^{n}=e
<li><span class="math inline">m, n \in \mathbb{Z} \mid g^{m}=g^{n}=e
\implies g^{m} \cdot g^{n}= g^{m + n} \iff e \cdot e = e \implies m +n
\in I(g)</span> per definizoine di <span
class="math inline">I(g)</span>, quindi <span class="math inline">I(g) +
Expand Down Expand Up @@ -1033,7 +1033,7 @@ <h1 class="title"> </h1>
<li><strong>Dim</strong>
<ul>
<li><span class="math inline">I(d) = I(g)</span>, allora <span
class="math inline">d \in I(d) \implies d \in I(g) \implies g^d =
class="math inline">d \in I(d) \implies d \in I(g) \implies g^d =
e</span></li>
<li><span class="math inline">d = o(g) = |H(g)| \bigg\vert |G|</span>
per il teorema di Lagrange, e dunque <span class="math inline">\exists k
Expand Down
18 changes: 9 additions & 9 deletions html/ideali.html
Original file line number Diff line number Diff line change
Expand Up @@ -358,9 +358,9 @@ <h1 class="title"> </h1>
<li><span class="math inline">(I(a_1, \ldots, a_n) , +) \leqslant (A,
+)</span>
<ul>
<li><span class="math inline">0 = a_1 \cdot 0 + \ldots + a_n \cdot 0 \in
I(a_1, \ldots a_n)</span>, dunque <span class="math inline">0</span> è
l’elemento neutro</li>
<li><span class="math inline">0 = a_1 \cdot 0 + \ldots + a_n \cdot 0
\in I(a_1, \ldots a_n)</span>, dunque <span class="math inline">0</span>
è l’elemento neutro</li>
<li><span class="math inline">\forall x, y \in I(a_1, \ldots, a_n) \quad
x = a_1b_1 + \ldots +a_nb_n \land y = a_1c_1 + \ldots+ a_nc_n \implies
x+ y = a_1b_1 + \ldots + a_nb_n + a_1c_1 + \ldots +a_nc_n</span>, che è
Expand Down Expand Up @@ -399,7 +399,7 @@ <h1 class="title"> </h1>
</ul></li>
<li><strong>Th</strong>
<ul>
<li><span class="math inline">\exists d \in I \mid I = I(d)</span>, o
<li><span class="math inline">\exists d \in I \mid I = I(d)</span>, o
equivalentemente, in <span class="math inline">\mathbb{Z}</span> ogni
ideale è principale</li>
</ul></li>
Expand Down Expand Up @@ -477,7 +477,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">a_{1}, \ldots , a_{n} \in
\mathbb{Z}</span></li>
<li><span class="math inline">\exists !d \in \mathbb{N} \mid
<li><span class="math inline">\exists !d \in \mathbb{N} \mid
I\left(a_{1}, \ldots , a_{n}\right)=I(d)</span>, ed è detto
<strong>massimo comun divisore degli <span class="math inline">a_1,
\ldots, a_n</span></strong>
Expand Down Expand Up @@ -528,7 +528,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">d</span> è il massimo tra i divisori
comuni se <span class="math inline">\forall k \in \mathbb{Z}: k \mid
a_1, \ldots, a_n \quad k \mid d</span></li>
a_1, \ldots, a_n \quad k \mid d</span></li>
<li><span class="math inline">\forall i \in [1, n] \quad k \mid a_i \iff
\exists x_i \in \mathbb{Z} \mid kx_i = a_i</span></li>
<li><span class="math inline">d \in I(d) = I(a_1, \ldots, a_n) \iff d
Expand Down Expand Up @@ -666,7 +666,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">a_{1}, \ldots, a_{n} \in
\mathbb{Z}</span></li>
<li><span class="math inline">\displaystyle \exists ! m \in \mathbb{N}
<li><span class="math inline">\displaystyle \exists ! m \in \mathbb{N}
\mid I(m) = I(a_1) \cap \ldots \cap I(a_n) =
\bigcap_{i=1}^{n}{I(a_i)}</span>, ed è detto <strong>minimo comune
multiplo degli <span class="math inline">a_1, \ldots,
Expand Down Expand Up @@ -715,7 +715,7 @@ <h1 class="title"> </h1>
<ul>
<li><span class="math inline">m</span> è il minimo tra i multipli comuni
se <span class="math inline">\forall k \in \mathbb{Z} : a_1, \ldots, a_n
\mid k \quad m \mid k</span></li>
\mid k \quad m \mid k</span></li>
<li><span class="math inline">\forall i \in [1, n] \quad a_i \mid k \iff
\exists x_i \in \mathbb{Z} \mid a_ix_i = k \iff k \in I(a_i)</span>,
allora <span class="math inline">k \in I(a_1) \cap \ldots \cap I(a_n) =
Expand Down Expand Up @@ -772,7 +772,7 @@ <h1 class="title"> </h1>
commutativo</li>
<li><span class="math inline">I, J \subset A</span> ideali</li>
<li><span class="math inline">I \cdot J = \{i_1 j_1 + \ldots + i_k j_k
\mid k \ge 1, i_1 , \ldots , i_k \in I, j_1 , \ldots , j_k \in J
\mid k \ge 1, i_1 , \ldots , i_k \in I, j_1 , \ldots , j_k \in J
\}</span> è detto <strong>prodotto tra <span
class="math inline">I</span> e <span
class="math inline">J</span></strong></li>
Expand Down
Loading

0 comments on commit ccc29f2

Please sign in to comment.