-
Notifications
You must be signed in to change notification settings - Fork 9
/
config.py
516 lines (416 loc) · 17.6 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import numpy as np
import os
import random
import logging
import tarfile
import pdb
#from utils import collect_vocab_and_tags_panx, collect_embedding_vocabs, write_vocab_tags_chars_embs, trim_embs
from collections import defaultdict
# shared global variables to be imported from model also
UNK = "$UNK$"
NUM = "$NUM$"
NONE = "O"
# special error message
class MyIOError(Exception):
def __init__(self, filename):
# custom error message
message = """
ERROR: Unable to locate file {}.
FIX: Have you tried running python build_data.py first?
This will build vocab file from your train, test and dev sets and
trimm your word vectors.
""".format(filename)
super(MyIOError, self).__init__(message)
class Config():
def __init__(self, args, load=True):
"""Initialize hyperparameters and load vocabs
Args:
load_embeddings: (bool) if True, load embeddings into
np array, else None
"""
self.dir_output = args.dir_output
self.dir_input = args.dir_input
self.dir_wikiann = args.dir_ner
self.dir_model = os.path.join(self.dir_output, "weights")
self.dir_model_highres = os.path.join(self.dir_output, 'weights')
self.dir_unlabeled = os.path.join(self.dir_output, 'multiannotations')
self.dir_bccannotations = os.path.join(self.dir_output, 'bccannotations')
self.langtaglang_file = os.path.join(self.dir_output, 'langtaglang.json')
self.params_dir = self.dir_model
self.filename_words = {}
for lang in set(self.highres_langs + self.lowres_langs):
self.filename_words[lang] = os.path.join(self.dir_input, f'builtdata_{lang}/words.txt')
self.filename_tags = os.path.join(self.dir_input, 'tags.txt')
self.filename_chars = os.path.join(self.dir_input, 'chars.txt')
self.path_log = os.path.join(self.dir_output, "log.txt")
self.filename_trimmed = {}
for lang in set(self.highres_langs + self.lowres_langs):
self.filename_trimmed[lang] = os.path.join(self.dir_input, f'builtdata_{lang}/trimmed_embs.npz')
# directory for training outputs
if not os.path.exists(self.dir_output):
os.mkdir(self.dir_output)
os.mkdir(self.dir_model)
os.mkdir(self.dir_unlabeled)
os.mkdir(self.dir_bccannotations)
self.logger = get_logger(self.path_log)
# load if requested (default)
if load:
for lang in set(self.highres_langs + self.lowres_langs):
self.load(lang)
def load(self, lang):
"""Loads vocabulary, processing functions and embeddings
Supposes that build_data.py has been run successfully and that
the corresponding files have been created (vocab and trimmed GloVe
vectors)
"""
logging.info('loading {}'.format(lang))
# 1. vocabulary
self.vocab_words[lang] = load_vocab(self.filename_words[lang])
for lang, vocab_word in self.vocab_words.items():
self.word_vocab[lang] = {v:k for k, v in vocab_word.items()}
self.vocab_tags = load_vocab(self.filename_tags)
self.vocab_chars = load_vocab(self.filename_chars)
self.tag_vocab = {v:k for k, v in self.vocab_tags.items()}
self.nwords[lang] = len(self.vocab_words[lang])
self.nchars = len(self.vocab_chars)
self.ntags = len(self.vocab_tags)
# 2. get processing functions that map str -> id
self.processing_word[lang] = get_processing_word(self.vocab_words[lang],
self.vocab_chars, lowercase=False, chars=self.use_chars, trim_lang=True, lowerchars=True if self.lowres_langs==['de'] else False)
self.processing_tag = get_processing_word(self.vocab_tags,
lowercase=False, allow_unk=False, trim_lang=False)
# 3. get pre-trained embeddings
self.embeddings[lang] = (get_trimmed_glove_vectors(self.filename_trimmed[lang], self.capacity)
if self.use_pretrained else None)
#logging.info('loaded {} with vocab size {} and embedding size {}'.format(lang, self.nwords[lang], self.embeddings[lang].shape[0]))
# general config
highres_langs = ['af', 'ar', 'bg', 'bn', 'bs', 'ca', 'cs', 'da', 'de', 'el', 'en', 'es', 'et',
'fa', 'fi', 'fr', 'he', 'hi', 'hr', 'hu', 'id', 'it', 'lt', 'lv', 'mk', 'ms', 'nl',
'no', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sq', 'sv', 'ta', 'tl',
'tr', 'uk', 'vi']
#highres_langs = ['en']
#highres_langs = highres_langs[20:25]
lowres_langs = ['af', 'ar', 'bg', 'bn', 'bs', 'ca', 'cs', 'da', 'de', 'el', 'en', 'es', 'et',
'fa', 'fi', 'fr', 'he', 'hi', 'hr', 'hu', 'id', 'it', 'lt', 'lv', 'mk', 'ms', 'nl',
'no', 'pl', 'pt', 'ro', 'ru', 'sk', 'sl', 'sq', 'sv', 'ta', 'tl',
'tr', 'uk', 'vi']
#filenames
#lowres_langs = ['en']
lang_script = {}
# vocab (created from dataset with build_data.py)
#filename_words = "./datasets/builtdata_cmu8/words.txt"
vocab_words = {}
word_vocab = {}
nwords = {}
embeddings = {}
processing_word = {}
capacity = 80000
num_unsup_iter = 1000
num_unsup_gold = 0
num_unsup_epochs = 1000
unsuplr = 5e-3
unsupsuplr = 5e-4
unsuptopk = 10
# glove files
#filename_glove = "data/glove.6B/glove.6B.{}d.txt".format(dim_word)
# trimmed embeddings (created from glove_filename with build_data.py)
#filename_trimmed = "./datasets/builtdata_cmu8/trimmed_embs_cmu.npz"
use_pretrained = True
# embeddings
dim_word = 300
dim_char = 100
# dataset
#filename_dev = "datasets/ner/uk.dev.multi"
#filename_test = "datasets/ner/uk.test.multi"
#filename_train = "datasets/ner/uk.train.100.multi"
#filename_dev = filename_test = filename_train = "ner/data/test.txt" # test
max_iter = None # if not None, max number of examples in Dataset
#nepoch for highres 20 for lowres 100
# training
train_embeddings = False
nepochs = 100
dropout = 0.5
batch_size = 1
test_batch_size = 100
lr_method = "adam"
lr = 0.001
lr_decay = 0.9
clip = -1 # if negative, no clipping
nepoch_no_imprv = 3
lowres_nepoch_no_imprv = 5
dev_dropout = 1.0
# model hyperparameters
hidden_size_char = 100 # lstm on chars
hidden_size_lstm = 300 # lstm on word embeddings
# NOTE: if both chars and crf, only 1.6x slower on GPU
use_crf = True # if crf, training is 1.7x slower on CPU
use_chars = True # if char embedding, training is 3.5x slower on CPU
entropy_loss_weight = 0
def get_processing_word(vocab_words=None, vocab_chars=None,
lowercase=False, chars=False, allow_unk=True, trim_lang=False, lowerchars=False):
"""Return lambda function that transform a word (string) into list,
or tuple of (list, id) of int corresponding to the ids of the word and
its corresponding characters.
Args:
vocab: dict[word] = idx
Returns:
f("cat") = ([12, 4, 32], 12345)
= (list of char ids, word id)
"""
def f(word):
# 0. get chars of words
if vocab_chars is not None and chars == True:
char_ids = []
for char in word if (not trim_lang or word in ['$NUM$', '$UNK$']) else word[3:].lower() if lowerchars else word[3:]:
# ignore chars out of vocabulary
if char in vocab_chars:
char_ids += [vocab_chars[char]]
# 1. preprocess word
if lowercase:
word = word.lower()
if word.isdigit():
word = NUM
# 2. get id of word
if vocab_words is not None:
if word in vocab_words:
word = vocab_words[word]
elif word.lower() in vocab_words:
word = vocab_words[word.lower()]
else:
if allow_unk:
word = vocab_words[UNK]
else:
raise Exception("Unknow key is not allowed. Check that "\
"your vocab (tags?) is correct word missing: {}".format(word))
# 3. return tuple char ids, word id
if vocab_chars is not None and chars == True:
return char_ids, word
else:
return word
return f
def count_unks(datasets, config):
print("lang sents words ne unk nerunk")
for lang in datasets:
sentences = datasets[lang]['train'].data
unkid = config.vocab_words[lang][UNK]
total_unk_count = 0
total_word_count = 0
total_ounk_count = 0
total_ne = 0
for sentid, sentencelabel in enumerate(sentences):
sentence, labelids = sentencelabel
vocabids = [word[1] for word in sentence]
unk_indices = [i for i in range(len(vocabids)) if vocabids[i] == unkid]
unk_labels = [labelids[i] for i in unk_indices]
o_unks = [1 for l in unk_labels if l==5]
num_ne = sum([1 for l in labelids if l!=5])
num_o_unks = sum(o_unks)
total_ounk_count += num_o_unks
unk_count = sum([1 if vid==unkid else 0 for vid in vocabids])
word_count = len(vocabids)
total_unk_count += unk_count
total_word_count += word_count
total_ne += num_ne
total_NER_unk_count = total_unk_count - total_ounk_count
num_sentences = sentid
print(f"{lang} {num_sentences+1} {total_word_count} {total_ne} {total_unk_count} {total_NER_unk_count}")
def load_vocab(filename):
"""Loads vocab from a file
Args:
filename: (string) the format of the file must be one word per line.
Returns:
d: dict[word] = index
"""
try:
d = dict()
with open(filename) as f:
for idx, word in enumerate(f):
word = word.strip()
d[word] = idx
except IOError:
raise MyIOError(filename)
return d
class CoNLLDatasetList(object):
"""Class that iterates over CoNLL Dataset
__iter__ method yields a tuple (words, tags)
words: list of raw words
tags: list of raw tags
If processing_word and processing_tag are not None,
optional preprocessing is appplied
Example:
```python
data = CoNLLDataset(filename)
for sentence, tags in data:
pass
```
"""
def __init__(self, filename, processing_word=None, processing_tag=None,
max_iter=None):
"""
Args:
filename: path to the file
processing_words: (optional) function that takes a word as input
processing_tags: (optional) function that takes a tag as input
max_iter: (optional) max number of sentences to yield
"""
self.filename = filename
self.processing_word = processing_word
self.processing_tag = processing_tag
self.max_iter = max_iter
self.length = None
self.data = []
self.sentences = []
self.nwords = 0
self.nunks = 0
self.loaddata()
def __iter__(self):
for i, item in enumerate(self.data):
if self.max_iter and i > self.max_iter:
return
yield item[0], item[1]
def loaddata(self):
niter = 0
if type(self.filename) == str:
f = open(self.filename, 'r', encoding='utf-8')
else:
#an open file is passed on
f = self.filename
words, tags = [], []
sentence = []
for line in f:
if type(self.filename) != str:
line = line.decode('utf-8')
line = line.strip()
if (len(line) == 0 or line.startswith("-DOCSTART-")):
if len(words) != 0:
niter += 1
if self.max_iter is not None and niter > self.max_iter:
break
self.data.append([words, tags])
words, tags = [], []
self.sentences.append(sentence)
sentence = []
else:
#Afshin: change the delimiter from ' ' to default because tabs
ls = line.split()
word, tag = ls[0],ls[-1]
self.nwords += 1
sentence += [word]
if self.processing_word is not None:
word = self.processing_word(word)
if self.processing_tag is not None:
tag = self.processing_tag(tag)
words += [word]
tags += [tag]
f.close()
def __len__(self):
return len(self.data)
def sample(self, num_instances):
return random.sample(self.data[0:self.max_iter], k=num_instances)
def get_vocabs(datasets):
"""Build vocabulary from an iterable of datasets objects
Args:
datasets: a list of dataset objects
Returns:
a set of all the words in the dataset
"""
print("Building vocab...")
vocab_words = set()
vocab_tags = set()
for dataset in datasets:
for words, tags in dataset:
vocab_words.update(words)
vocab_tags.update(tags)
print("- done. {} tokens".format(len(vocab_words)))
return vocab_words, vocab_tags
def get_char_vocab(dataset):
"""Build char vocabulary from an iterable of datasets objects
Args:
dataset: a iterator yielding tuples (sentence, tags)
Returns:
a set of all the characters in the dataset
"""
vocab_char = set()
for words, _ in dataset:
for word in words:
vocab_char.update(word)
return vocab_char
def get_trimmed_glove_vectors(filename, capacity=0):
"""
Args:
filename: path to the npz file
Returns:
matrix of embeddings (np array)
"""
try:
with np.load(filename) as data:
if capacity:
assert capacity > data['embeddings'].shape[0], 'capacity less than vocab size'
logging.info('load embeddings with shape {} from {}'.format(str(data['embeddings'].shape), filename))
extra_rows = capacity - data['embeddings'].shape[0]
if extra_rows > 0:
extra_embs = np.zeros((extra_rows, data['embeddings'].shape[1]), dtype=np.float32)
return np.vstack((data['embeddings'], extra_embs))
else:
logging.info('load embeddings with shape {} from {}'.format(str(data['embeddings'].shape), filename))
return data["embeddings"]
except IOError:
raise MyIOError(filename)
def get_logger(filename):
"""Return a logger instance that writes in filename
Args:
filename: (string) path to log.txt
Returns:
logger: (instance of logger)
"""
logger = logging.getLogger('logger')
logger.setLevel(logging.DEBUG)
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG)
handler = logging.FileHandler(filename)
handler.setLevel(logging.DEBUG)
handler.setFormatter(logging.Formatter(
'%(asctime)s:%(levelname)s: %(message)s'))
logging.getLogger().addHandler(handler)
return logger
def read_dataset_panx_individual(config, langid, max_iter=None):
"""
:param data_dir: where multilingual conll datasets are located (e.g. french dataset has fr- prefix)
:param highres_langs: code for high resource languages (e.g. ['en', 'de', 'fr']
:param lowres_lang: code for one low resource language e.g. 'uk'
:return: datasets for all languages in a dictionary where key is langid and value is the dataset records
"""
data_dir = config.dir_wikiann
targz_file = os.path.join(data_dir, "{}.tar.gz".format(langid))
tar = tarfile.open(targz_file, "r:gz")
data_set = {}
#for lowres_lang we need to load train dev test
targz_file = os.path.join(data_dir, "{}.tar.gz".format(langid))
tar = tarfile.open(targz_file, "r:gz")
for member in tar.getmembers():
#don't read extra data
if member.name == 'extra':
continue
file_handle = tar.extractfile(member)
dataset = CoNLLDatasetList(file_handle, config.processing_word[langid],
config.processing_tag, max_iter if member.name in ['train', 'dev'] and max_iter else config.max_iter)
data_set[member.name] = dataset
return data_set
def read_dataset_panx_multiannotated(config, langid, max_iter=None):
"""
:param data_dir: where multilingual conll datasets are located (e.g. french dataset has fr- prefix)
:param highres_langs: code for high resource languages (e.g. ['en', 'de', 'fr']
:param lowres_lang: code for one low resource language e.g. 'uk'
:return: datasets for all languages in a dictionary where key is langid and value is the dataset records
"""
data_dir = config.dir_unlabeled
targz_file = os.path.join(data_dir, f'{langid}.tar.gz')
tar = tarfile.open(targz_file, "r:gz")
data_set = {}
#for lowres_lang we need to load train dev test
for member in tar.getmembers():
logging.info('loading {} tagged by {} max_iter {}'.format(langid, member.name, max_iter))
file_handle = tar.extractfile(member)
dataset = CoNLLDatasetList(file_handle, config.processing_word[langid],
config.processing_tag, max_iter if max_iter else config.max_iter)
data_set[member.name] = dataset
return data_set