Skip to content

A repository for examples and extensions of what I learn from the classes.

Notifications You must be signed in to change notification settings

agamat/datacamp-1

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Datacamp Timeline

Class Name Directory Date Completed
Object Oriented R at a Glance [/ObjectOrientedR] {2016/12/23}
Data Visualization with ggplot2, Part 1 [/DataVisGgplot2P1] {2016/09/01}
Data Visualization with ggplot2, Part 2 [/DataVisGgplot2P2] {2017/01/16}
Data Visualization with ggplot2, Part 3 [/DataVisGgplot2P3] {2017/01/27}
Writing Functions in R [/WritingFunctionsInR] {2017/02/01}
Reporting with R Markdown [/ReportingWithRMarkdown] {2017/02/02}
Text Mining: Bag of Words [/TextBagOfWords] {2017/02/08}
Working With RStudio, Part 1 [/WorkingWithRStudioP1] {2017/02/12}
Working With RStudio, Part 2 [/WorkingWithRStudioP2] {2017/03/11}
Intro to Python for Data Science [/IntroPythonDataScience] {2017/03/18}
Intermediate to Python for Data Science [/IntermediatePythonDataScience] {2017/03/26}
Beginning Bayes in R [/BeginningBayesR] {2017/04/20}
Foundations of Inference [/FoundationsInference] {2017/04/27}
Intermediate R - Practice [/IntermediateRPractice] {2017/05/21}
Importing and Cleaning: Case Study [/ImportCleaningCaseStudy] {2017/06/03}
Importing Data in R, Part 1 [/ImportDataRP1] {2017/06/08}
Importing Data in R, Part 2 [/ImportDataRP2] {2017/06/09}
Joining Data in R with Dplyr [/JoiningDataDplyr] {2017/06/15}
Introduction to Spark in R [/IntroToSparkR] {2017/06/30}
Data Visualization in R [/DataVisInR] {2017/08/04}
Introduction to Data [/IntroToData] {2017/08/04}
Exploratory Data Analysis [/ExploratoryDA] {2017/08/07}
Correlation and Regression [/CorrAndRegress] {2017/08/09}
Machine Learning Toolbox [/MLToolbox] {2017/08/11}
Unsupervised Learning in R [/UnsupervisedInR] {2017/08/09}
Data Visualization in R with ggvis [/DataVisGGVis] {2017/08/23}
Data Visualization in R with Lattice [/DataVisLattice] {2017/08/25}
String Manipulation in R With Stringr [/StringManipStringR] {2017/09/01}
Introduction to R and Finance [/introToRFinance] {2017/09/16}
Intermediate R for Finance [/IntermediateFinanceInR] {2017/09/23}
Manipulating Time Series Data in R [/ManipulatingTimeSeriesR] {2017/09/29}
Importing and Managing Financial Data [/ImportManageFinanceR] {2017/10/06}
Working with Web Data in R [/WebDataInR] {2017/10/13}
Manipulating Time Series Data in Python [/ManipulatingTimeSeriesPython] ------------
Data Analysis in R, the data.table Way [/DataTableWay] -------------
Introduction to Time Series Analysis [/TimeSeriesAnalysisR] {2017/10/20}
ARIMA Modeling with R [/ArimaInR] {2017/10/27}
Manipulating Time Series: Case Study [/ManipulatingTimeSeriesCaseStudy] {2017/11/03}
Forcasting Using R [/ForcasingUsingR] {2017/11/10}
Introduction to Shell [/IntroToShell] {2017/11/16}
Visualizing Time Series in R [/VisualizeTimeSeries] {2017/11/23}
Introduction to Portfolio Analysis in R [/IntroPortfolioAnalysisR] {2017/12/14}
Sentiment Analysis in R [/SentimentAnalysisR] {2017/12/15}
NLP Fundamentals in Python [/NLPInFundamentalsPython] {2017/12/03}
Foundations of Probability in R [/FoundationsProbabilityR] {2017/12/23}
Building Web Applications With Shiny [/WebAppsShiny] {2017/12/29}
Network Analysis in R [/NetworkAnalysisR] {2018/1/04}
Geospatial Data in R [/GeospatialDataR] {2018/01/11}
Scalable Data Processing in R [/ScalableDataProcessingR] {2018/02/02}
Web Applications with Shiny: Case Study [/WebAppsShinyCaseStudy] {2018/02/09}
Introduction to the Tidyverse [/IntroToTidyverse] {2018/02/15}
Introduction to Databases in Python [/IntroPythonDatabase] {2018/02/23}
Intro To Stats: Corr. & Linear Reg. [/IntroCorrLinearRegression] {2018/03/02}
Building Chatbots in Python [/ChatbotsInPython] {2018/03/09}
Parallel Computing with Dask [/ParallelComputingDask] {2018/03/16}
Interactive Maps with leaflet in R [/InteractiveMapsLeafletR] {2018/07/13}
Network Science in R - A Tidy Approach [/NetworkScienceInR] {2018/07/19}
Experimental Design in R [/ExperimentalDesignR] {2018/08/01}
Structural Equation Modeling with Lavaan [/StructuralModelingWithLavaan] {2018/08/10}
Network Analysis in R: Case Studies [/NetowrkInRCaseStudy] {2018/09/06}
Fundamentals of Bayesian Data Analysis [/BayesianDataAnalysisInR] {2018/09/14}
Deep Learning in Python [/DeepLearningPython] {2018/09/20}
Network Analysis in Python, Part 1 [/NetworkingAnaysisP1] {2018/10/11}
Network Analysis in Python, Part 2 [/NetworkingAnaysisP2] {2018/10/18}
Machine Learning in the Tidyverse [/MLinTidyverse] {2018/11/09}
Nonlinear Modeling in R with GAMs [/NonlinearGamsR] {2018/11/14}
Factor Analysis in R [/FactorAnalysisR] {2018/11/26}
Linear Algebra for Data Science in R [/LinearAlgebraR] {2018/11/29}
Foundations of Functional Programming [/FoundationsFunctionalWithPurrr] {2019/01/03}
Differential Expression Analysis in R [/DifferentialExpressionsR] {}
Hyperparameter Tuning in R [/HyperparameterTuningR] {2019/02/1}
Feature Engineering in PySpark [/FeatureEngineeringPySpark] {2019/03/11}
Python Data Science Toolbox, Part 1 [/PythonDataScienceToolbox-P1] {2019/03/16}
Pandas Foundations [/PythonPandasFoundations] {2019/03/29}
Writing Efficient Python Code [/EfficientPython] {2019/04/09}
Supply Chain Analytics in Python [/SupplyChainPython] {2019/5/1}
Interactive Data Visualization w/ Bokeh [/InteractiveVisBokeh] {2019/5/15}
Conda Essentials [/CondaEssentials] {2019/6/26}
Cleaning Data in Python [/CleaningDataPython] {2019/7/11}
Feature Engineering for NLP in Python [/NLPFeatureEngineeringPython] {2019/8/22}
Machine Learning With Apache Spark [/MLWithApacheSpark] {2019/9/25}
Financial Trading in R [/FinancialTradingR] {2019/10/16}
Streamlined Data Ingestion with pandas [/StreamlinedDataIngestion] { }

| Key | Meaning | |------------------- | | R | Review/Redo. | | O | Organize. | | F | Freeze. |

About

A repository for examples and extensions of what I learn from the classes.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 100.0%