Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 18 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,24 @@ Additions to existing modules
≟-≡ : (eq : i ≡ j) → (i ≟ j) ≡ yes eq
≟-≡-refl : (i : Fin n) → (i ≟ i) ≡ yes refl
≟-≢ : (i≢j : i ≢ j) → (i ≟ j) ≡ no i≢j
inject-< : inject j < i

record Least⟨_⟩ (P : Pred (Fin n) p) : Set p where
constructor least
field
witness : Fin n
example : P witness
minimal : ∀ {j} → .(j < witness) → ¬ P j

record Least⟨¬_⟩ (P : Pred (Fin n) p) : Set p where
constructor μ
field
witness : Fin n
.contra : ¬ P witness
minimal : ∀ {j} → .(j < witness) → P j

search-least⟨¬_⟩ : Decidable P → Π[ P ] ⊎ Least⟨¬ P ⟩
¬¬least⇒least : Decidable P → Least⟨¬ ∁ P ⟩ → Least⟨ P ⟩
```

* In `Data.Nat.ListAction.Properties`
Expand Down
58 changes: 49 additions & 9 deletions src/Data/Fin/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -48,17 +48,18 @@ open import Relation.Binary.PropositionalEquality.Properties as ≡
open import Relation.Binary.PropositionalEquality as ≡
using (≡-≟-identity; ≢-≟-identity)
open import Relation.Nullary.Decidable as Dec
using (Dec; _because_; yes; no; _×-dec_; _⊎-dec_; map′)
using (Dec; _because_; yes; no; _×-dec_; _⊎-dec_; map′; decidable-stable)
open import Relation.Nullary.Negation.Core
using (¬_; contradiction; contradiction′)
open import Relation.Nullary.Recomputable using (¬-recompute)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Unary as U
using (U; Pred; Decidable; _⊆_; Satisfiable; Universal)
using (U; Pred; Decidable; _⊆_; ∁; Satisfiable; Universal)
open import Relation.Unary.Properties using (U?)

private
variable
a : Level
a p q : Level
A : Set a
m n o : ℕ
i j : Fin n
Expand Down Expand Up @@ -470,6 +471,10 @@ toℕ-inject : ∀ {i : Fin n} (j : Fin′ i) → toℕ (inject j) ≡ toℕ j
toℕ-inject {i = suc i} zero = refl
toℕ-inject {i = suc i} (suc j) = cong suc (toℕ-inject j)

inject-< : ∀ {i : Fin n} (j : Fin′ i) → inject j < i
inject-< {i = suc i} zero = z<s
inject-< {i = suc i} (suc j) = s<s (inject-< j)

------------------------------------------------------------------------
-- inject₁
------------------------------------------------------------------------
Expand Down Expand Up @@ -1049,16 +1054,51 @@ private
note P? = Dec.does (P? 0F) ∧ Dec.does (P? 1F) ∧ Dec.does (P? 2F) ∧ true
, refl

-- If a decidable predicate P over a finite set is sometimes false,
-- then we can find the smallest value for which this is the case.
------------------------------------------------------------------------
-- A decidable predicate P over a finite set is either always true,
-- or else we can find the smallest value for which P is false.

module _ (P : Pred (Fin n) p) where

record Least⟨¬_⟩ : Set p where
constructor least
field
witness : Fin n
.contra : ¬ P witness
minimal : ∀ {j} → .(j < witness) → P j

record Least⟨_⟩ : Set p where
constructor least
field
witness : Fin n
example : P witness
minimal : ∀ {j} → .(j < witness) → ¬ P j

search-least⟨¬_⟩ : ∀ {P : Pred (Fin n) p} → Decidable P → Π[ P ] ⊎ Least⟨¬ P ⟩
search-least⟨¬_⟩ {n = zero} {P = _} P? = inj₁ λ()
search-least⟨¬_⟩ {n = suc _} {P = P} P? with P? zero
... | no ¬p₀ = inj₂ (least zero ¬p₀ λ())
... | yes p₀ = Sum.map (∀-cons p₀) least⁺ search-least⟨¬ P? ∘ suc ⟩
where
least⁺ : Least⟨¬ P ∘ suc ⟩ → Least⟨¬ P ⟩
least⁺ (least i ¬pₛᵢ ∀[j<i]P) = least (suc i) ¬pₛᵢ
λ where
{zero} _ → p₀
{suc _} sj<si → ∀[j<i]P (ℕ.s<s⁻¹ sj<si)

module _ {P : Pred (Fin n) p} (P? : Decidable P) where

¬¬least⇒least : Least⟨¬ ∁ P ⟩ → Least⟨ P ⟩
¬¬least⇒least (least i ¬¬pᵢ ∀[j<i]) =
least i (decidable-stable (P? i) (¬-recompute ¬¬pᵢ)) ∀[j<i]

¬∀⟶∃¬-smallest : ∀ n {p} (P : Pred (Fin n) p) → Decidable P →
¬ (∀ i → P i) → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j))
¬∀⟶∃¬-smallest zero P P? ¬∀P = contradiction (λ()) ¬∀P
¬∀⟶∃¬-smallest (suc n) P P? ¬∀P with P? zero
... | false because [¬P₀] = (zero , invert [¬P₀] , λ ())
... | true because [P₀] = map suc (map id (∀-cons (invert [P₀])))
(¬∀⟶∃¬-smallest n (P ∘ suc) (P? ∘ suc) (¬∀P ∘ (∀-cons (invert [P₀]))))
¬∀⟶∃¬-smallest (suc n) P P? ¬∀P = [ contradiction′ ¬∀P , lemma ] $ search-least⟨¬ P? ⟩
where
lemma : Least⟨¬ P ⟩ → ∃ λ i → ¬ P i × ((j : Fin′ i) → P (inject j))
lemma (least i ¬pᵢ ∀[j<i]P) = i , ¬-recompute ¬pᵢ , λ j → ∀[j<i]P (inject-< j)

-- When P is a decidable predicate over a finite set the following
-- lemma can be proved.
Expand Down