Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 10 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -103,3 +103,13 @@ Additions to existing modules
```agda
¬¬-η : A → ¬ ¬ A
```

* In Relation.Unary.Properites
```agda
¬∃⟨P⟩⇒Π[∁P] : ¬ ∃⟨ P ⟩ → Π[ ∁ P ]
¬∃⟨P⟩⇒∀[∁P] : ¬ ∃⟨ P ⟩ → ∀[ ∁ P ]
∃⟨∁P⟩⇒¬Π[P] : ∃⟨ ∁ P ⟩ → ¬ Π[ P ]
∃⟨∁P⟩⇒¬∀[P] : ∃⟨ ∁ P ⟩ → ¬ ∀[ P ]
Π[∁P]⇒¬∃[P] : Π[ ∁ P ] → ¬ ∃⟨ P ⟩
∀[∁P]⇒¬∃[P] : ∀[ ∁ P ] → ¬ ∃⟨ P ⟩
```
23 changes: 22 additions & 1 deletion src/Relation/Unary/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

module Relation.Unary.Properties where

open import Data.Product.Base as Product using (_×_; _,_; swap; proj₁; zip′)
open import Data.Product.Base as Product using (_×_; _,_; -,_; swap; proj₁; zip′)
open import Data.Sum.Base using (inj₁; inj₂)
open import Data.Unit.Base using (tt)
open import Function.Base using (id; _$_; _∘_; _∘₂_)
Expand Down Expand Up @@ -52,6 +52,27 @@ U-Universal = λ _ → _
∁U-Empty : Empty {A = A} (∁ U)
∁U-Empty = λ x x∈∁U → x∈∁U _

------------------------------------------------------------------------
-- De Morgan's laws

¬∃⟨P⟩⇒Π[∁P] : ∀ {P : Pred A ℓ} → ¬ ∃⟨ P ⟩ → Π[ ∁ P ]
¬∃⟨P⟩⇒Π[∁P] ¬sat x Px = ¬sat (x , Px)

¬∃⟨P⟩⇒∀[∁P] : ∀ {P : Pred A ℓ} → ¬ ∃⟨ P ⟩ → ∀[ ∁ P ]
¬∃⟨P⟩⇒∀[∁P] ¬sat Px = ¬sat (-, Px)

∃⟨∁P⟩⇒¬Π[P] : ∀ {P : Pred A ℓ} → ∃⟨ ∁ P ⟩ → ¬ Π[ P ]
∃⟨∁P⟩⇒¬Π[P] (x , ¬Px) ΠP = ¬Px (ΠP x)

∃⟨∁P⟩⇒¬∀[P] : ∀ {P : Pred A ℓ} → ∃⟨ ∁ P ⟩ → ¬ ∀[ P ]
∃⟨∁P⟩⇒¬∀[P] (_ , ¬Px) ∀P = ¬Px ∀P

Π[∁P]⇒¬∃[P] : ∀ {P : Pred A ℓ} → Π[ ∁ P ] → ¬ ∃⟨ P ⟩
Π[∁P]⇒¬∃[P] Π∁P (x , Px) = Π∁P x Px
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(again, would curry' typecheck?_


∀[∁P]⇒¬∃[P] : ∀ {P : Pred A ℓ} → ∀[ ∁ P ] → ¬ ∃⟨ P ⟩
∀[∁P]⇒¬∃[P] ∀∁P (_ , Px) = ∀∁P Px

------------------------------------------------------------------------
-- Subset properties

Expand Down