Skip to content

Commit

Permalink
add: initial training
Browse files Browse the repository at this point in the history
  • Loading branch information
ahmadmustafaanis committed Apr 3, 2024
0 parents commit 6c223f7
Show file tree
Hide file tree
Showing 4 changed files with 193 additions and 0 deletions.
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
wandb
data
__pycache__
22 changes: 22 additions & 0 deletions data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
import torch
import torchvision
from torch.utils.data import Dataset
from torchvision import transforms


class ShuffledCIFAR10(Dataset):
def __init__(self, train=True):
self.dataset = torchvision.datasets.CIFAR10(
root="./data", train=train, download=True, transform=transforms.ToTensor()
)
self.permutation = torch.randperm(32 * 32)

def __len__(self):
return len(self.dataset)

def __getitem__(self, idx):
img, label = self.dataset[idx]
img_flat = img.view(-1, 32 * 32)
shuffled_img_flat = img_flat[:, self.permutation]
shuffled_img = shuffled_img_flat.view_as(img)
return shuffled_img, img
69 changes: 69 additions & 0 deletions model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.resnet import BasicBlock, ResNet


def vae_loss(recon_x, x, mu, logvar):
# Reconstruction loss (assuming Bernoulli distribution)
recon_loss = F.binary_cross_entropy(recon_x, x, reduction="sum")
# KL divergence
kl_div = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
return recon_loss + kl_div


class UnFlatten(nn.Module):
def forward(self, input):
return input.view(input.size(0), 512, 1, 1)


class VAE(nn.Module):
def __init__(self, image_channels=3, latent_dim=128):
super(VAE, self).__init__()
# Encoder (ResNet-18)
self.encoder = nn.Sequential(
*list(ResNet(BasicBlock, [2, 2, 2, 2]).children())[:-1], nn.Flatten()
)
self.fc_mu = nn.Linear(512, latent_dim)
self.fc_logvar = nn.Linear(512, latent_dim)

# Decoder
self.decoder_input = nn.Linear(latent_dim, 512)
self.decoder = nn.Sequential(
UnFlatten(), # Output: 512x1x1
nn.ConvTranspose2d(
512, 256, kernel_size=4, stride=2, padding=1
), # Output: 256x2x2
nn.ReLU(),
nn.ConvTranspose2d(
256, 128, kernel_size=4, stride=2, padding=1
), # Output: 128x4x4
nn.ReLU(),
nn.ConvTranspose2d(
128, 64, kernel_size=4, stride=2, padding=1
), # Output: 64x8x8
nn.ReLU(),
nn.ConvTranspose2d(
64, 32, kernel_size=4, stride=2, padding=1
), # Output: 32x16x16
nn.ReLU(),
nn.ConvTranspose2d(
32, image_channels, kernel_size=4, stride=2, padding=1
), # Output: 3x32x32
nn.Sigmoid(),
)

def reparameterize(self, mu, logvar):
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return mu + eps * std

def forward(self, x):
# Encode
x_encoded = self.encoder(x)
mu = self.fc_mu(x_encoded)
logvar = self.fc_logvar(x_encoded)
z = self.reparameterize(mu, logvar)
# Decode
x_reconstructed = self.decoder(self.decoder_input(z))
return x_reconstructed, mu, logvar
99 changes: 99 additions & 0 deletions train.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import optim
from torch.utils.data import DataLoader
from tqdm import tqdm

import wandb
from data import ShuffledCIFAR10
from model import VAE, vae_loss

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
EPOCHS = 100000 # can we have grokking kinda effect with this insane number???
BATCH_SIZE = 64
train_dataset = ShuffledCIFAR10(train=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)

val_dataset = ShuffledCIFAR10(train=False)
val_loader = DataLoader(
val_dataset, batch_size=BATCH_SIZE, shuffle=False
) # No need to shuffle the validation dataset


model = VAE().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)


def show_images(shuffled, original, reconstructed):
fig, axs = plt.subplots(1, 3, figsize=(9, 3))
for ax, img, title in zip(
axs,
[shuffled, original, reconstructed],
["Shuffled", "Original", "Reconstructed"],
):
ax.imshow(np.transpose(img.numpy(), (1, 2, 0)))
ax.set_title(title)
ax.axis("off")
plt.show()


wandb.init(
project="image_reconstruction_vae",
config={
"epochs": EPOCHS,
"batch_size": BATCH_SIZE,
"image_channels": 3,
"CUDA_LAUNCH_BLOCKING=1": True,
},
)

for epoch in tqdm(range(EPOCHS)):
model.train()
train_loss = 0
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
recon_batch, mu, logvar = model(data)
loss = vae_loss(recon_batch, target, mu, logvar)
loss.backward()
train_loss += loss.item()
optimizer.step()

avg_train_loss = train_loss / len(train_loader)
print(f"Epoch {epoch}, Training Loss: {avg_train_loss}")
wandb.log({"epoch": epoch, "train_loss": avg_train_loss})

model.eval()
val_loss = 0

with torch.no_grad():
for data, target in val_loader:
data, target = data.to(device), target.to(device)
recon_batch, _, _ = model(data)

loss = vae_loss(recon_batch, target, mu, logvar)
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
wandb.log({"epoch": epoch, "val_loss": avg_val_loss})

shuffled_img, original_img, reconstructed_img = (
data[0].cpu(),
target[0].cpu(),
recon_batch[0].cpu(),
)
# print(len(data))
wandb.log(
{
"reconstructed_images": [
wandb.Image(recon_batch[i].cpu(), caption="Reconstructed Image")
for i in range(5)
],
"original_images": [
wandb.Image(target[i].cpu(), caption="Original Image") for i in range(5)
],
"shuffled_images": [
wandb.Image(data[i].cpu(), caption="Shuffled Image") for i in range(5)
],
}
)

0 comments on commit 6c223f7

Please sign in to comment.