Skip to content

Latest commit

 

History

History
62 lines (50 loc) · 1.77 KB

README.md

File metadata and controls

62 lines (50 loc) · 1.77 KB

Deep Learning 🧠

My solutions and notes for Deep Learning Specialization by Stanford (DeepLearning.ai)

  • Logistic Regression
  • Single Hidden Layer Neural Net
  • Deep Neural Net
  • Regularization
  • Initialization
  • Gradient Checking
  • Optimization (Mini-batch, RMSProps, GD with Momentum, Adam)
  • Batch Norm (Andrej Karpathy's Video)
  • Hyperparameters Tuning
  • Tensorflow
  • Orthogonalization
  • Single Number Evaluation
  • Satisfying and Optimizing Metric
  • Train/Dev/Test Distributions
  • Human Level Performance
  • Avoidable Bias
  • Error Analysis
  • Mismatched Training and Dev/Test Sets
  • Transfer Learning
  • Multitask Learning
  • End-to-end Deep Learning
  • Edge Detection
  • Padding
  • Pooling
  • CNN (from scratch)
  • CNN (using Keras Sequential + Functional API)
  • ResNets
  • MobileNet
  • Efficient Net
  • Object Localization
  • Image Segmentation
  • RNN
  • GNU
  • LSTM
  • Word Embeddings
  • GloVe
  • Negative Sampling
  • Attention Model
  • Audio Dataset
  • Trigger Word Detection
  • Transformers

Specialization Certificate

certificate