My solutions and notes for Deep Learning Specialization by Stanford (DeepLearning.ai)
- Logistic Regression
- Single Hidden Layer Neural Net
- Deep Neural Net
- Regularization
- Initialization
- Gradient Checking
- Optimization (Mini-batch, RMSProps, GD with Momentum, Adam)
- Batch Norm (Andrej Karpathy's Video)
- Hyperparameters Tuning
- Tensorflow
- Orthogonalization
- Single Number Evaluation
- Satisfying and Optimizing Metric
- Train/Dev/Test Distributions
- Human Level Performance
- Avoidable Bias
- Error Analysis
- Mismatched Training and Dev/Test Sets
- Transfer Learning
- Multitask Learning
- End-to-end Deep Learning
- Edge Detection
- Padding
- Pooling
- CNN (from scratch)
- CNN (using Keras Sequential + Functional API)
- ResNets
- MobileNet
- Efficient Net
- Object Localization
- Image Segmentation
- RNN
- GNU
- LSTM
- Word Embeddings
- GloVe
- Negative Sampling
- Attention Model
- Audio Dataset
- Trigger Word Detection
- Transformers