Calculate the distance (in various units) between two points on Earth using their latitude and longitude.
pip install haversine
from haversine import haversine, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
haversine(lyon, paris)
>> 392.2172595594006 # in kilometers
haversine(lyon, paris, unit=Unit.MILES)
>> 243.71201856934454 # in miles
# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71201856934454 # in miles
haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516 # in nautical miles
The haversine.Unit
enum contains all supported units:
import haversine
print(tuple(haversine.Unit))
outputs
(<Unit.KILOMETERS: 'km'>, <Unit.METERS: 'm'>, <Unit.MILES: 'mi'>,
<Unit.NAUTICAL_MILES: 'nmi'>, <Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>,
<Unit.RADIANS: 'rad'>, <Unit.DEGREES: 'deg'>)
Calculates a point from a given vector (distance and direction) and start point. Currently explicitly supports both cardinal (north, east, south, west) and intercardinal (northeast, southeast, southwest, northwest) directions. But also allows for explicit angles expressed in Radians.
from haversine import inverse_haversine, Direction
from math import pi
paris = (48.8567, 2.3508) # (lat, lon)
# Finding 32 km west of Paris
inverse_haversine(paris, 32, Direction.WEST)
# returns tuple (49.1444, 2.3508)
# Finding 32 km southwest of Paris
inverse_haversine(paris, 32, pi * 1.25)
# returns tuple (48.5377, 1.8705)
# Finding 50 miles north of Paris
inverse_haversine(paris, 50, Direction.NORTH, unit=Unit.MILES)
# returns tuple (49.5803, 2.3508)
# Finding 10 nautical miles south of Paris
inverse_haversine(paris, 10, Direction.SOUTH, unit=Unit.NAUTICAL_MILES)
# returns tuple (48.6901, 2.3508)
You will need to add numpy in order to gain performance with vectors.
You can then do this:
from haversine import haversine_vector, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)
haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)
>> array([ 392.21725956, 6163.43638211])
It is generally slower to use haversine_vector
to get distance between two points, but can be really fast to compare distances between two vectors.
You can generate a matrix of all combinations between coordinates in different vectors by setting comb
parameter as True.
from haversine import haversine_vector, Unit
lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)
haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)
>> array([[ 392.21725956, 343.37455271],
[6163.43638211, 5586.48447423]])
The output array from the example above returns the following table:
Paris | New York | |
---|---|---|
Lyon | Lyon <-> Paris | Lyon <-> New York |
London | London <-> Paris | London <-> New York |
By definition, if you have a vector a with n elements, and a vector b with m elements. The result matrix M would be
Clone the project.
Install pipenv.
Run pipenv install --dev
Launch test with pipenv run pytest