Skip to content

Commit

Permalink
first commit inference
Browse files Browse the repository at this point in the history
  • Loading branch information
Danyache committed Dec 14, 2021
1 parent ff54e9e commit 158e470
Show file tree
Hide file tree
Showing 20 changed files with 6,731 additions and 0 deletions.
4 changes: 4 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
*/__pycache__/*
*/__pycache__/
.ipynb_checkpoints
__pycache__
237 changes: 237 additions & 0 deletions coordinate_reg/image_infer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,237 @@
import cv2
import numpy as np
import os
import mxnet as mx
from skimage import transform as trans
import insightface
import sys
# sys.path.append('/home/jovyan/FaceShifter-2/FaceShifter3/')
from insightface_func.face_detect_crop_single import Face_detect_crop
import kornia


M = np.array([[ 0.57142857, 0., 32.],[ 0.,0.57142857, 32.]])
IM = np.array([[[1.75, -0., -56.],[ -0., 1.75, -56.]]])


def square_crop(im, S):
if im.shape[0] > im.shape[1]:
height = S
width = int(float(im.shape[1]) / im.shape[0] * S)
scale = float(S) / im.shape[0]
else:
width = S
height = int(float(im.shape[0]) / im.shape[1] * S)
scale = float(S) / im.shape[1]
resized_im = cv2.resize(im, (width, height))
det_im = np.zeros((S, S, 3), dtype=np.uint8)
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im
return det_im, scale


def transform(data, center, output_size, scale, rotation):
scale_ratio = scale
rot = float(rotation) * np.pi / 180.0
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio)
t1 = trans.SimilarityTransform(scale=scale_ratio)
cx = center[0] * scale_ratio
cy = center[1] * scale_ratio
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy))
t3 = trans.SimilarityTransform(rotation=rot)
t4 = trans.SimilarityTransform(translation=(output_size / 2,
output_size / 2))
t = t1 + t2 + t3 + t4
M = t.params[0:2]
cropped = cv2.warpAffine(data,
M, (output_size, output_size),
borderValue=0.0)
return cropped, M


def trans_points2d_batch(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for j in range(pts.shape[0]):
for i in range(pts.shape[1]):
pt = pts[j][i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M[j], new_pt)
new_pts[j][i] = new_pt[0:2]
return new_pts


def trans_points2d(pts, M):
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i] = new_pt[0:2]

return new_pts


def trans_points3d(pts, M):
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1])
#print(scale)
new_pts = np.zeros(shape=pts.shape, dtype=np.float32)
for i in range(pts.shape[0]):
pt = pts[i]
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32)
new_pt = np.dot(M, new_pt)
#print('new_pt', new_pt.shape, new_pt)
new_pts[i][0:2] = new_pt[0:2]
new_pts[i][2] = pts[i][2] * scale

return new_pts


def trans_points(pts, M):
if pts.shape[1] == 2:
return trans_points2d(pts, M)
else:
return trans_points3d(pts, M)


class Handler:
def __init__(self, prefix, epoch, im_size=192, det_size=224, ctx_id=0, root='./insightface_func/models'):
print('loading', prefix, epoch)
if ctx_id >= 0:
ctx = mx.gpu(ctx_id)
else:
ctx = mx.cpu()
image_size = (im_size, im_size)
# self.detector = insightface.model_zoo.get_model(
# 'retinaface_mnet025_v2') #can replace with your own face detector
self.detector = Face_detect_crop(name='antelope', root=root)
self.detector.prepare(ctx_id=ctx_id, det_thresh=0.6, det_size=(640,640))
#self.detector = insightface.model_zoo.get_model('retinaface_r50_v1')
#self.detector.prepare(ctx_id=ctx_id)
self.det_size = det_size
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch)
all_layers = sym.get_internals()
sym = all_layers['fc1_output']
self.image_size = image_size
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None)
model.bind(for_training=False,
data_shapes=[('data', (1, 3, image_size[0], image_size[1]))
])
model.set_params(arg_params, aux_params)
self.model = model
self.image_size = image_size


def get_without_detection_batch(self, img, M, IM):
rimg = kornia.warp_affine(img, M.repeat(img.shape[0],1,1), (192, 192), padding_mode='zeros')
rimg = kornia.bgr_to_rgb(rimg)

data = mx.nd.array(rimg)
db = mx.io.DataBatch(data=(data, ))
self.model.forward(db, is_train=False)
pred = self.model.get_outputs()[-1].asnumpy()
pred = pred.reshape((pred.shape[0], -1, 2))
pred[:, :, 0:2] += 1
pred[:, :, 0:2] *= (self.image_size[0] // 2)

pred = trans_points2d_batch(pred, IM.repeat(img.shape[0],1,1).numpy())

return pred


def get_without_detection_without_transform(self, img):
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32)
rimg = cv2.warpAffine(img, M, self.image_size, borderValue=0.0)
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB)
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB

input_blob[0] = rimg
data = mx.nd.array(input_blob)
db = mx.io.DataBatch(data=(data, ))
self.model.forward(db, is_train=False)
pred = self.model.get_outputs()[-1].asnumpy()[0]
pred = pred.reshape((-1, 2))
pred[:, 0:2] += 1
pred[:, 0:2] *= (self.image_size[0] // 2)
pred = trans_points2d(pred, IM)

return pred


def get_without_detection(self, img):
bbox = [0, 0, img.shape[0], img.shape[1]]
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32)

w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
rotate = 0
_scale = self.image_size[0] * 2 / 3.0 / max(w, h)

rimg, M = transform(img, center, self.image_size[0], _scale,
rotate)
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB)
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB

input_blob[0] = rimg
data = mx.nd.array(input_blob)
db = mx.io.DataBatch(data=(data, ))
self.model.forward(db, is_train=False)
pred = self.model.get_outputs()[-1].asnumpy()[0]
if pred.shape[0] >= 3000:
pred = pred.reshape((-1, 3))
else:
pred = pred.reshape((-1, 2))
pred[:, 0:2] += 1
pred[:, 0:2] *= (self.image_size[0] // 2)
if pred.shape[1] == 3:
pred[:, 2] *= (self.image_size[0] // 2)

IM = cv2.invertAffineTransform(M)
pred = trans_points(pred, IM)

return pred


def get(self, img, get_all=False):
out = []
det_im, det_scale = square_crop(img, self.det_size)
bboxes, _ = self.detector.detect(det_im)
if bboxes.shape[0] == 0:
return out
bboxes /= det_scale
if not get_all:
areas = []
for i in range(bboxes.shape[0]):
x = bboxes[i]
area = (x[2] - x[0]) * (x[3] - x[1])
areas.append(area)
m = np.argsort(areas)[-1]
bboxes = bboxes[m:m + 1]
for i in range(bboxes.shape[0]):
bbox = bboxes[i]
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32)
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1])
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2
rotate = 0
_scale = self.image_size[0] * 2 / 3.0 / max(w, h)
rimg, M = transform(img, center, self.image_size[0], _scale,
rotate)
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB)
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB
input_blob[0] = rimg
data = mx.nd.array(input_blob)
db = mx.io.DataBatch(data=(data, ))
self.model.forward(db, is_train=False)
pred = self.model.get_outputs()[-1].asnumpy()[0]
if pred.shape[0] >= 3000:
pred = pred.reshape((-1, 3))
else:
pred = pred.reshape((-1, 2))
pred[:, 0:2] += 1
pred[:, 0:2] *= (self.image_size[0] // 2)
if pred.shape[1] == 3:
pred[:, 2] *= (self.image_size[0] // 2)

IM = cv2.invertAffineTransform(M)
pred = trans_points(pred, IM)
out.append(pred)
return out
Binary file added coordinate_reg/model/2d106det-0000.params
Binary file not shown.
Loading

0 comments on commit 158e470

Please sign in to comment.