-
Notifications
You must be signed in to change notification settings - Fork 273
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
20 changed files
with
6,731 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
*/__pycache__/* | ||
*/__pycache__/ | ||
.ipynb_checkpoints | ||
__pycache__ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
import cv2 | ||
import numpy as np | ||
import os | ||
import mxnet as mx | ||
from skimage import transform as trans | ||
import insightface | ||
import sys | ||
# sys.path.append('/home/jovyan/FaceShifter-2/FaceShifter3/') | ||
from insightface_func.face_detect_crop_single import Face_detect_crop | ||
import kornia | ||
|
||
|
||
M = np.array([[ 0.57142857, 0., 32.],[ 0.,0.57142857, 32.]]) | ||
IM = np.array([[[1.75, -0., -56.],[ -0., 1.75, -56.]]]) | ||
|
||
|
||
def square_crop(im, S): | ||
if im.shape[0] > im.shape[1]: | ||
height = S | ||
width = int(float(im.shape[1]) / im.shape[0] * S) | ||
scale = float(S) / im.shape[0] | ||
else: | ||
width = S | ||
height = int(float(im.shape[0]) / im.shape[1] * S) | ||
scale = float(S) / im.shape[1] | ||
resized_im = cv2.resize(im, (width, height)) | ||
det_im = np.zeros((S, S, 3), dtype=np.uint8) | ||
det_im[:resized_im.shape[0], :resized_im.shape[1], :] = resized_im | ||
return det_im, scale | ||
|
||
|
||
def transform(data, center, output_size, scale, rotation): | ||
scale_ratio = scale | ||
rot = float(rotation) * np.pi / 180.0 | ||
#translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) | ||
t1 = trans.SimilarityTransform(scale=scale_ratio) | ||
cx = center[0] * scale_ratio | ||
cy = center[1] * scale_ratio | ||
t2 = trans.SimilarityTransform(translation=(-1 * cx, -1 * cy)) | ||
t3 = trans.SimilarityTransform(rotation=rot) | ||
t4 = trans.SimilarityTransform(translation=(output_size / 2, | ||
output_size / 2)) | ||
t = t1 + t2 + t3 + t4 | ||
M = t.params[0:2] | ||
cropped = cv2.warpAffine(data, | ||
M, (output_size, output_size), | ||
borderValue=0.0) | ||
return cropped, M | ||
|
||
|
||
def trans_points2d_batch(pts, M): | ||
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | ||
for j in range(pts.shape[0]): | ||
for i in range(pts.shape[1]): | ||
pt = pts[j][i] | ||
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | ||
new_pt = np.dot(M[j], new_pt) | ||
new_pts[j][i] = new_pt[0:2] | ||
return new_pts | ||
|
||
|
||
def trans_points2d(pts, M): | ||
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | ||
for i in range(pts.shape[0]): | ||
pt = pts[i] | ||
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | ||
new_pt = np.dot(M, new_pt) | ||
#print('new_pt', new_pt.shape, new_pt) | ||
new_pts[i] = new_pt[0:2] | ||
|
||
return new_pts | ||
|
||
|
||
def trans_points3d(pts, M): | ||
scale = np.sqrt(M[0][0] * M[0][0] + M[0][1] * M[0][1]) | ||
#print(scale) | ||
new_pts = np.zeros(shape=pts.shape, dtype=np.float32) | ||
for i in range(pts.shape[0]): | ||
pt = pts[i] | ||
new_pt = np.array([pt[0], pt[1], 1.], dtype=np.float32) | ||
new_pt = np.dot(M, new_pt) | ||
#print('new_pt', new_pt.shape, new_pt) | ||
new_pts[i][0:2] = new_pt[0:2] | ||
new_pts[i][2] = pts[i][2] * scale | ||
|
||
return new_pts | ||
|
||
|
||
def trans_points(pts, M): | ||
if pts.shape[1] == 2: | ||
return trans_points2d(pts, M) | ||
else: | ||
return trans_points3d(pts, M) | ||
|
||
|
||
class Handler: | ||
def __init__(self, prefix, epoch, im_size=192, det_size=224, ctx_id=0, root='./insightface_func/models'): | ||
print('loading', prefix, epoch) | ||
if ctx_id >= 0: | ||
ctx = mx.gpu(ctx_id) | ||
else: | ||
ctx = mx.cpu() | ||
image_size = (im_size, im_size) | ||
# self.detector = insightface.model_zoo.get_model( | ||
# 'retinaface_mnet025_v2') #can replace with your own face detector | ||
self.detector = Face_detect_crop(name='antelope', root=root) | ||
self.detector.prepare(ctx_id=ctx_id, det_thresh=0.6, det_size=(640,640)) | ||
#self.detector = insightface.model_zoo.get_model('retinaface_r50_v1') | ||
#self.detector.prepare(ctx_id=ctx_id) | ||
self.det_size = det_size | ||
sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) | ||
all_layers = sym.get_internals() | ||
sym = all_layers['fc1_output'] | ||
self.image_size = image_size | ||
model = mx.mod.Module(symbol=sym, context=ctx, label_names=None) | ||
model.bind(for_training=False, | ||
data_shapes=[('data', (1, 3, image_size[0], image_size[1])) | ||
]) | ||
model.set_params(arg_params, aux_params) | ||
self.model = model | ||
self.image_size = image_size | ||
|
||
|
||
def get_without_detection_batch(self, img, M, IM): | ||
rimg = kornia.warp_affine(img, M.repeat(img.shape[0],1,1), (192, 192), padding_mode='zeros') | ||
rimg = kornia.bgr_to_rgb(rimg) | ||
|
||
data = mx.nd.array(rimg) | ||
db = mx.io.DataBatch(data=(data, )) | ||
self.model.forward(db, is_train=False) | ||
pred = self.model.get_outputs()[-1].asnumpy() | ||
pred = pred.reshape((pred.shape[0], -1, 2)) | ||
pred[:, :, 0:2] += 1 | ||
pred[:, :, 0:2] *= (self.image_size[0] // 2) | ||
|
||
pred = trans_points2d_batch(pred, IM.repeat(img.shape[0],1,1).numpy()) | ||
|
||
return pred | ||
|
||
|
||
def get_without_detection_without_transform(self, img): | ||
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32) | ||
rimg = cv2.warpAffine(img, M, self.image_size, borderValue=0.0) | ||
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB) | ||
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB | ||
|
||
input_blob[0] = rimg | ||
data = mx.nd.array(input_blob) | ||
db = mx.io.DataBatch(data=(data, )) | ||
self.model.forward(db, is_train=False) | ||
pred = self.model.get_outputs()[-1].asnumpy()[0] | ||
pred = pred.reshape((-1, 2)) | ||
pred[:, 0:2] += 1 | ||
pred[:, 0:2] *= (self.image_size[0] // 2) | ||
pred = trans_points2d(pred, IM) | ||
|
||
return pred | ||
|
||
|
||
def get_without_detection(self, img): | ||
bbox = [0, 0, img.shape[0], img.shape[1]] | ||
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32) | ||
|
||
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | ||
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | ||
rotate = 0 | ||
_scale = self.image_size[0] * 2 / 3.0 / max(w, h) | ||
|
||
rimg, M = transform(img, center, self.image_size[0], _scale, | ||
rotate) | ||
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB) | ||
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB | ||
|
||
input_blob[0] = rimg | ||
data = mx.nd.array(input_blob) | ||
db = mx.io.DataBatch(data=(data, )) | ||
self.model.forward(db, is_train=False) | ||
pred = self.model.get_outputs()[-1].asnumpy()[0] | ||
if pred.shape[0] >= 3000: | ||
pred = pred.reshape((-1, 3)) | ||
else: | ||
pred = pred.reshape((-1, 2)) | ||
pred[:, 0:2] += 1 | ||
pred[:, 0:2] *= (self.image_size[0] // 2) | ||
if pred.shape[1] == 3: | ||
pred[:, 2] *= (self.image_size[0] // 2) | ||
|
||
IM = cv2.invertAffineTransform(M) | ||
pred = trans_points(pred, IM) | ||
|
||
return pred | ||
|
||
|
||
def get(self, img, get_all=False): | ||
out = [] | ||
det_im, det_scale = square_crop(img, self.det_size) | ||
bboxes, _ = self.detector.detect(det_im) | ||
if bboxes.shape[0] == 0: | ||
return out | ||
bboxes /= det_scale | ||
if not get_all: | ||
areas = [] | ||
for i in range(bboxes.shape[0]): | ||
x = bboxes[i] | ||
area = (x[2] - x[0]) * (x[3] - x[1]) | ||
areas.append(area) | ||
m = np.argsort(areas)[-1] | ||
bboxes = bboxes[m:m + 1] | ||
for i in range(bboxes.shape[0]): | ||
bbox = bboxes[i] | ||
input_blob = np.zeros((1, 3) + self.image_size, dtype=np.float32) | ||
w, h = (bbox[2] - bbox[0]), (bbox[3] - bbox[1]) | ||
center = (bbox[2] + bbox[0]) / 2, (bbox[3] + bbox[1]) / 2 | ||
rotate = 0 | ||
_scale = self.image_size[0] * 2 / 3.0 / max(w, h) | ||
rimg, M = transform(img, center, self.image_size[0], _scale, | ||
rotate) | ||
rimg = cv2.cvtColor(rimg, cv2.COLOR_BGR2RGB) | ||
rimg = np.transpose(rimg, (2, 0, 1)) #3*112*112, RGB | ||
input_blob[0] = rimg | ||
data = mx.nd.array(input_blob) | ||
db = mx.io.DataBatch(data=(data, )) | ||
self.model.forward(db, is_train=False) | ||
pred = self.model.get_outputs()[-1].asnumpy()[0] | ||
if pred.shape[0] >= 3000: | ||
pred = pred.reshape((-1, 3)) | ||
else: | ||
pred = pred.reshape((-1, 2)) | ||
pred[:, 0:2] += 1 | ||
pred[:, 0:2] *= (self.image_size[0] // 2) | ||
if pred.shape[1] == 3: | ||
pred[:, 2] *= (self.image_size[0] // 2) | ||
|
||
IM = cv2.invertAffineTransform(M) | ||
pred = trans_points(pred, IM) | ||
out.append(pred) | ||
return out |
Binary file not shown.
Oops, something went wrong.