-
Notifications
You must be signed in to change notification settings - Fork 273
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
378f13e
commit 54360f7
Showing
3 changed files
with
208 additions
and
34 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
import torch.nn as nn | ||
import math | ||
|
||
|
||
def conv3x3(in_planes, out_planes, stride=1): | ||
"""3x3 convolution with padding""" | ||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | ||
padding=1, bias=False) | ||
|
||
|
||
class BasicBlock(nn.Module): | ||
expansion = 1 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(BasicBlock, self).__init__() | ||
self.conv1 = conv3x3(inplanes, planes, stride) | ||
self.bn1 = nn.BatchNorm2d(planes) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.conv2 = conv3x3(planes, planes) | ||
self.bn2 = nn.BatchNorm2d(planes) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class Bottleneck(nn.Module): | ||
expansion = 4 | ||
|
||
def __init__(self, inplanes, planes, stride=1, downsample=None): | ||
super(Bottleneck, self).__init__() | ||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) | ||
self.bn1 = nn.BatchNorm2d(planes) | ||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) | ||
self.bn2 = nn.BatchNorm2d(planes) | ||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | ||
self.bn3 = nn.BatchNorm2d(planes * 4) | ||
self.relu = nn.ReLU(inplace=True) | ||
self.downsample = downsample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv2(out) | ||
out = self.bn2(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
|
||
if self.downsample is not None: | ||
residual = self.downsample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNet(nn.Module): | ||
|
||
def __init__(self, block, layers, num_classes=1000, include_top=True): | ||
self.inplanes = 64 | ||
super(ResNet, self).__init__() | ||
self.include_top = include_top | ||
|
||
self.conv0 = nn.Conv2d(3, 64, kernel_size=7, stride=1, padding=3, bias=False) | ||
self.bn0 = nn.BatchNorm2d(64) | ||
self.relu0 = nn.ReLU(inplace=True) | ||
|
||
self.conv1 = nn.Conv2d(64, 64, kernel_size=7, stride=2, padding=3, bias=False) | ||
self.bn1 = nn.BatchNorm2d(64) | ||
self.relu = nn.ReLU(inplace=True) | ||
|
||
self.layer1 = self._make_layer(block, 32, layers[0], stride=2) | ||
self.layer2 = self._make_layer(block, 64, layers[1], stride=2) | ||
self.layer3 = self._make_layer(block, 128, layers[2], stride=2) | ||
self.layer4 = self._make_layer(block, 256, layers[3], stride=2) | ||
self.layer5 = self._make_layer(block, 512, layers[4], stride=2) | ||
self.layer6 = self._make_layer(block, 256, layers[5], stride=2) | ||
|
||
for m in self.modules(): | ||
if isinstance(m, nn.Conv2d): | ||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | ||
m.weight.data.normal_(0, math.sqrt(2. / n)) | ||
elif isinstance(m, nn.BatchNorm2d): | ||
m.weight.data.fill_(1) | ||
m.bias.data.zero_() | ||
|
||
def _make_layer(self, block, planes, blocks, stride=1): | ||
downsample = None | ||
if stride != 1 or self.inplanes != planes * block.expansion: | ||
downsample = nn.Sequential( | ||
nn.Conv2d(self.inplanes, planes * block.expansion, | ||
kernel_size=1, stride=stride, bias=False), | ||
nn.BatchNorm2d(planes * block.expansion), | ||
) | ||
|
||
layers = [] | ||
layers.append(block(self.inplanes, planes, stride, downsample)) | ||
self.inplanes = planes * block.expansion | ||
for i in range(1, blocks): | ||
layers.append(block(self.inplanes, planes)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
x0 = self.conv0(x) | ||
x0 = self.bn0(x0) | ||
x0 = self.relu0(x0) | ||
|
||
x1 = self.conv1(x0) | ||
x1 = self.bn1(x1) | ||
x1 = self.relu(x1) | ||
|
||
x2 = self.layer1(x1) | ||
x3 = self.layer2(x2) | ||
x4 = self.layer3(x3) | ||
x5 = self.layer4(x4) | ||
x6 = self.layer5(x5) | ||
x7 = self.layer6(x6) | ||
|
||
return x7, x6, x5, x4, x3, x2, x1, x0 | ||
|
||
|
||
def MLAttrEncoderResnet(**kwargs): | ||
model = ResNet(Bottleneck, [2, 2, 2, 2, 2, 2], **kwargs) | ||
return model |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters