-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
390 additions
and
30 deletions.
There are no files selected for viewing
File renamed without changes.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,204 @@ | ||
from typing import Any, Optional | ||
|
||
import numpy as np | ||
from gymnasium.spaces import Box, Discrete, Graph, GraphInstance | ||
|
||
from skdecide.builders.domain import Renderable, UnrestrictedActions | ||
from skdecide.core import Space, Value | ||
from skdecide.domains import DeterministicPlanningDomain | ||
from skdecide.hub.domain.maze import Maze | ||
from skdecide.hub.domain.maze.maze import DEFAULT_MAZE, Action, State | ||
from skdecide.hub.solver.stable_baselines import StableBaseline | ||
from skdecide.hub.solver.stable_baselines.gnn import GraphPPO | ||
from skdecide.hub.space.gym import GymSpace, ListSpace | ||
from skdecide.utils import rollout | ||
|
||
|
||
class D(DeterministicPlanningDomain, UnrestrictedActions, Renderable): | ||
T_state = GraphInstance # Type of states | ||
T_observation = T_state # Type of observations | ||
T_event = Action # Type of events | ||
T_value = float # Type of transition values (rewards or costs) | ||
T_predicate = bool # Type of logical checks | ||
T_info = ( | ||
None # Type of additional information given as part of an environment outcome | ||
) | ||
|
||
|
||
class GraphMaze(D): | ||
def __init__(self, maze_str: str = DEFAULT_MAZE, discrete_features: bool = False): | ||
self.discrete_features = discrete_features | ||
self.maze_domain = Maze(maze_str=maze_str) | ||
np_wall = np.array(self.maze_domain._maze) | ||
np_y = np.array( | ||
[ | ||
[(i) for j in range(self.maze_domain._num_cols)] | ||
for i in range(self.maze_domain._num_rows) | ||
] | ||
) | ||
np_x = np.array( | ||
[ | ||
[(j) for j in range(self.maze_domain._num_cols)] | ||
for i in range(self.maze_domain._num_rows) | ||
] | ||
) | ||
walls = np_wall.ravel() | ||
coords = [i for i in zip(np_y.ravel(), np_x.ravel())] | ||
np_node_id = np.reshape(range(len(walls)), np_wall.shape) | ||
edge_links = [] | ||
edges = [] | ||
for i in range(self.maze_domain._num_rows): | ||
for j in range(self.maze_domain._num_cols): | ||
current_coord = (i, j) | ||
if i > 0: | ||
next_coord = (i - 1, j) | ||
edge_links.append( | ||
(np_node_id[current_coord], np_node_id[next_coord]) | ||
) | ||
edges.append(np_wall[current_coord] * np_wall[next_coord]) | ||
if i < self.maze_domain._num_rows - 1: | ||
next_coord = (i + 1, j) | ||
edge_links.append( | ||
(np_node_id[current_coord], np_node_id[next_coord]) | ||
) | ||
edges.append(np_wall[current_coord] * np_wall[next_coord]) | ||
if j > 0: | ||
next_coord = (i, j - 1) | ||
edge_links.append( | ||
(np_node_id[current_coord], np_node_id[next_coord]) | ||
) | ||
edges.append(np_wall[current_coord] * np_wall[next_coord]) | ||
if j < self.maze_domain._num_cols - 1: | ||
next_coord = (i, j + 1) | ||
edge_links.append( | ||
(np_node_id[current_coord], np_node_id[next_coord]) | ||
) | ||
edges.append(np_wall[current_coord] * np_wall[next_coord]) | ||
self.edges = np.array(edges) | ||
self.edge_links = np.array(edge_links) | ||
self.walls = walls | ||
self.node_ids = np_node_id | ||
self.coords = coords | ||
|
||
def _mazestate2graph(self, state: State) -> GraphInstance: | ||
x, y = state | ||
agent_presence = np.zeros(self.walls.shape, dtype=self.walls.dtype) | ||
agent_presence[self.node_ids[y, x]] = 1 | ||
nodes = np.stack([self.walls, agent_presence], axis=-1) | ||
if self.discrete_features: | ||
return GraphInstance( | ||
nodes=nodes, edges=self.edges, edge_links=self.edge_links | ||
) | ||
else: | ||
return GraphInstance( | ||
nodes=nodes, edges=self.edges[:, None], edge_links=self.edge_links | ||
) | ||
|
||
def _graph2mazestate(self, graph: GraphInstance) -> State: | ||
y, x = self.coords[graph.nodes[:, 1].nonzero()[0][0]] | ||
return State(x=x, y=y) | ||
|
||
def _is_terminal(self, state: D.T_state) -> D.T_predicate: | ||
return self.maze_domain._is_terminal(self._graph2mazestate(state)) | ||
|
||
def _get_next_state(self, memory: D.T_state, action: D.T_event) -> D.T_state: | ||
maze_memory = self._graph2mazestate(memory) | ||
maze_next_state = self.maze_domain._get_next_state( | ||
memory=maze_memory, action=action | ||
) | ||
return self._mazestate2graph(maze_next_state) | ||
|
||
def _get_transition_value( | ||
self, | ||
memory: D.T_state, | ||
action: D.T_event, | ||
next_state: Optional[D.T_state] = None, | ||
) -> Value[D.T_value]: | ||
maze_memory = self._graph2mazestate(memory) | ||
if next_state is None: | ||
maze_next_state = None | ||
else: | ||
maze_next_state = self._graph2mazestate(next_state) | ||
return self.maze_domain._get_transition_value( | ||
memory=maze_memory, action=action, next_state=maze_next_state | ||
) | ||
|
||
def _get_action_space_(self) -> Space[D.T_event]: | ||
return self.maze_domain._get_action_space_() | ||
|
||
def _get_goals_(self) -> Space[D.T_observation]: | ||
return ListSpace([self._mazestate2graph(self.maze_domain._goal)]) | ||
|
||
def _is_goal( | ||
self, observation: D.T_agent[D.T_observation] | ||
) -> D.T_agent[D.T_predicate]: | ||
return self.maze_domain._is_goal(self._graph2mazestate(observation)) | ||
|
||
def _get_initial_state_(self) -> D.T_state: | ||
return self._mazestate2graph(self.maze_domain._get_initial_state_()) | ||
|
||
def _get_observation_space_(self) -> Space[D.T_observation]: | ||
if self.discrete_features: | ||
return GymSpace( | ||
Graph( | ||
node_space=Box(low=0, high=1, shape=(2,), dtype=self.walls.dtype), | ||
edge_space=Discrete(2), | ||
) | ||
) | ||
else: | ||
return GymSpace( | ||
Graph( | ||
node_space=Box(low=0, high=1, shape=(2,), dtype=self.walls.dtype), | ||
edge_space=Box(low=0, high=1, shape=(1,), dtype=self.edges.dtype), | ||
) | ||
) | ||
|
||
def _render_from(self, memory: D.T_state, **kwargs: Any) -> Any: | ||
maze_memory = self._graph2mazestate(memory) | ||
self.maze_domain._render_from(memory=maze_memory, **kwargs) | ||
|
||
|
||
MAZE = """ | ||
+-+-+-+-+o+-+-+--+-+-+ | ||
| | | | | ||
+ + + +-+-+-+ +--+ + + | ||
| | | | | | | | | ||
+ +-+-+ +-+ + + -+ +-+ | ||
| | | | | | | | ||
+ + + + + + + +--+ +-+ | ||
| | | | | | | ||
+-+-+-+-+-+-+-+ -+-+ + | ||
| | | | | ||
+ +-+-+-+-+ + +--+-+ + | ||
| | | | | ||
+ + + +-+ +-+ +--+-+-+ | ||
| | | | | | | ||
+ +-+-+ + +-+ + -+-+ + | ||
| | | | | | | | | ||
+-+ +-+ + + + +--+ + + | ||
| | | | | | | | ||
+ +-+ +-+-+-+-+ -+ + + | ||
| | | | | | ||
+-+-+-+-+-+x+-+--+-+-+ | ||
""" | ||
|
||
domain = GraphMaze(maze_str=MAZE, discrete_features=True) | ||
assert domain.reset() in domain.get_observation_space() | ||
|
||
# random rollout | ||
rollout(domain=domain, max_steps=50, num_episodes=1) | ||
|
||
# solve with sb3-PPO-GNN | ||
domain_factory = lambda: GraphMaze(maze_str=MAZE) | ||
max_steps = domain.maze_domain._num_cols * domain.maze_domain._num_rows | ||
with StableBaseline( | ||
domain_factory=domain_factory, | ||
algo_class=GraphPPO, | ||
baselines_policy="GraphInputPolicy", | ||
learn_config={"total_timesteps": 100}, | ||
# batch_size=1, | ||
# normalize_advantage=False | ||
) as solver: | ||
|
||
solver.solve() | ||
rollout(domain=domain_factory(), solver=solver, max_steps=max_steps, num_episodes=1) |
Oops, something went wrong.