-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_metrics.py
194 lines (139 loc) · 8.58 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
import torch
from tqdm import tqdm
from run_baseline import get_val
from metrics.metrics import calculate_pain_metrics
def calculate_metrics(prediction_dir, max_try=5, max_sample=-1):
# get valset
val_set = get_val()
# get vallist
val_list = torch.load("val_list_bug.pt")
gt_pspi_path = "/media/tien/SSD-NOT-OS/pain_intermediate_data/groundtruth/pspi"
correct_val_list_ = torch.load("val_list.pt")
correct_val_list = [(video_name, start_frame.cpu().item(), end_frame.cpu().item()) for video_name, start_frame, end_frame in correct_val_list_]
correct_val_list = set(correct_val_list)
new_val_list = []
for idx, sample in enumerate(tqdm(val_list)):
video_name, start_frame, end_frame = sample
if (video_name, start_frame.cpu().item(), end_frame.cpu().item()) not in correct_val_list:
# print("skip", video_name, start_frame, end_frame)
continue
new_val_list.append((idx, sample))
torch.save(new_val_list, f"val_list_with_old_idx.pt")
val_list = new_val_list
# predition list
pred = {
'exp': [],
'pspi': [],
}
gt = {
'exp': [],
'pspi': [],
}
stimuli = []
remove = True
if remove and os.path.exists(f"{prediction_dir}/pred.pt"):
os.remove(f"{prediction_dir}/pred.pt")
os.remove(f"{prediction_dir}/gt.pt")
os.remove(f"{prediction_dir}/stimuli.pt")
if not os.path.exists(f"{prediction_dir}/pred.pt"):
for try_idx in range(max_try):
for idx, sample in tqdm(val_list):
video_name, start_frame, end_frame = sample
end_frame = start_frame + 608
try:
_pred = torch.load(f"{prediction_dir}/try_{try_idx}/{idx}.pt", map_location="cpu")
except:
_pred = torch.load(f"{prediction_dir}/try_{try_idx}/test_ctrl_{idx}.pt", map_location="cpu")
try:
_pred = _pred['x']
except:
_pred = _pred
if len(_pred.shape) == 2:
_pred = _pred.unsqueeze(0)
sequence_length = min(_pred.shape[1] if len(_pred.shape) == 3 else _pred.shape[0], 608)
_pred = _pred[:,:sequence_length]
pred['exp'].append(_pred)
if try_idx == 0:
sample = val_set.__getitem__(idx, video_name=video_name, start_frame_id=start_frame, end_frame_id=end_frame)
try:
_pspi = torch.load(f"{prediction_dir}/pspi/{idx}.pt")
except:
_pspi = torch.load(f"{prediction_dir}/pspi/test_ctrl_{idx}.pt")
_pspi = [p[1] for p in _pspi]
_pspi = _pspi[:sequence_length]
pred['pspi'].append(_pspi)
exp_groundtruth = sample['x']
exp_groundtruth[..., :3] /= 100
_pspi_groundtruth = torch.load(os.path.join(gt_pspi_path, f"test_ctrl_{idx}.pt"))
pspi_groundtruth = [p[1] for p in _pspi_groundtruth]
pspi_groundtruth = pspi_groundtruth[:sequence_length]
exp_groundtruth = exp_groundtruth[:sequence_length]
gt['exp'].append(exp_groundtruth)
gt['pspi'].append(torch.tensor(pspi_groundtruth))
_stimuli = sample['ctrl'][-2]
_stimuli = _stimuli[:sequence_length]
stimuli.append(_stimuli)
if max_sample != -1 and idx == max_sample:
break
# print("metrics")
if not os.path.exists(f"{prediction_dir}/pred.pt"):
torch.save(pred, f"{prediction_dir}/pred.pt")
torch.save(gt, f"{prediction_dir}/gt.pt")
torch.save(stimuli, f"{prediction_dir}/stimuli.pt")
else:
pred = torch.load(f"{prediction_dir}/pred.pt")
gt = torch.load(f"{prediction_dir}/gt.pt")
stimuli = torch.load(f"{prediction_dir}/stimuli.pt")
one_try_lenght = len(val_list) if max_sample == -1 else max_sample + 1
multiple_exp = [torch.stack(pred['exp'][i:i+one_try_lenght]) for i in range(0, len(pred['exp']), one_try_lenght)]
multiple_exp = torch.stack(multiple_exp).squeeze()
calculate_pain_metrics(
torch.stack(pred['exp'][:len(val_list) if max_sample == -1 else max_sample + 1]).squeeze().cpu()[..., :103],
multiple_exp.cpu()[..., :103],
torch.stack(gt['exp']).cpu()[..., :103],
torch.stack([torch.tensor(sample) for sample in pred['pspi']]).cpu(),
torch.stack(gt['pspi']).cpu(),
torch.stack(stimuli).cpu(),
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/eval_output")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/baseline/3dmm")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/without_diffusion_forcing")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/context_window/2")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/context_window/4")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/context_window/8")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/0_5")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/1")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/2")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/4")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/1_1_1")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/1_2_4")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/05_1_2")
# parser.add_argument("--prediction_dir", type=str, default="/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/025_05_1")
dirs = [
# "/media/tien/SSD-NOT-OS/baseline_new/with_old_ind/",
# "/media/tien/SSD-NOT-OS/pain_intermediate_data/eval_output",
# "/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/without_diffusion_forcing",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/context_window/2",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/context_window/4",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/context_window/8",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/0_5",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/1",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/2",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/df_uncertainty/4",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/1_1_1",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/1_2_4",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/05_1_2",
"/media/tien/SSD-NOT-OS/pain_intermediate_data/ablation/guiding/025_05_1"
]
parser.add_argument("--max_try", type=int, default=5)
parser.add_argument("--max_sample", type=int, default=-1)
args = parser.parse_args()
# prediction_dir = args.prediction_dir
for dir in dirs:
print(f"Processing directory: {dir}")
# Your processing logic here
calculate_metrics(dir, max_try=args.max_try, max_sample=args.max_sample)