-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_video.py
134 lines (96 loc) · 4.49 KB
/
train_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from lightning import Trainer
import torch
import yaml
from diffusion.module.utils.biovid import BioVidDM
from diffusion.elucidated_for_video import ElucidatedDiffusion
from lightning.pytorch.loggers import WandbLogger
import os
from lightning.pytorch.callbacks import ModelCheckpoint
from lightning.pytorch.callbacks import LearningRateMonitor
from diffusion.module.utils.ema import EMA
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='Main of training script')
parser.add_argument('--conf', type=str, default="configure/video_conf.yml", help='Path to the configuration file')
parser.add_argument('--load_from_checkpoint', action='store_true', help='Load from checkpoint')
parser.add_argument('--checkpoint', type=str, default=None, help='Path to the checkpoint')
parser.add_argument('--fast_check', action='store_true', help='Fast check')
parser.add_argument('--logger', action='store_true', help='Use logger')
args = parser.parse_args()
conf_file = args.conf
load_from_checkpoint = args.load_from_checkpoint
checkpoint = args.checkpoint
fast_check = args.fast_check
logger = args.logger
if fast_check:
logger = False
if load_from_checkpoint:
assert checkpoint is not None, "Please provide the checkpoint path"
with open(conf_file, 'r') as f:
conf = yaml.safe_load(f)
run_name = conf['RUN_NAME']
train = conf['TRAIN']
validate = conf['VALIDATE']
test = conf['TEST']
wandb_logger = WandbLogger(project="diffusion_pain_emoca_latent_video", name=run_name) if logger else None
if logger:
wandb_logger.log_hyperparams(conf)
dirs = [conf['DIFFUSION']['sample_output_dir'],conf['CHECKPOINT'], conf['CODEBACKUP']]
for dir in dirs:
os.makedirs(dir, exist_ok=True)
torch.set_float32_matmul_precision("highest") # use float32 matmul for better performance
model = ElucidatedDiffusion.from_conf(conf_file)
biovid = BioVidDM.from_conf(conf_file)
checkpoint_callback = ModelCheckpoint(
monitor='val_loss',
dirpath=conf['CHECKPOINT'],
filename='elucidated_diffusion-{epoch:02d}-{val_loss:.2f}',
save_top_k=2,
mode='min',
save_last=True
)
ema = EMA(
decay=0.9999,
evaluate_ema_weights_instead=True,
save_ema_weights_in_callback_state=True
)
lr_monitor = LearningRateMonitor(logging_interval="step")
# Lightning Trainer for flexible accelerated training
trainer = Trainer(
max_epochs = 30,
accelerator = 'gpu',
devices = 2 if train else 1, # Piece of cake multi-gpu support!
strategy = 'ddp_find_unused_parameters_true',
logger=wandb_logger if logger else None,
enable_checkpointing=True,
callbacks=[checkpoint_callback,
ema,
lr_monitor],
check_val_every_n_epoch=1,
fast_dev_run=500 if fast_check else False,
)
if train:
trainer.fit(model, datamodule = biovid, ckpt_path=checkpoint if load_from_checkpoint else None)
best_ckpt = checkpoint_callback.best_model_path
last_ckpt = checkpoint_callback.last_model_path
if logger:
wandb_logger.log_hyperparams({"best_ckpt": best_ckpt,
'last_ckpt': last_ckpt})
with open(conf_file, 'r') as f:
conf = yaml.safe_load(f)
with open(conf_file, 'w') as f:
conf['BEST_CKPT'] = best_ckpt
conf['LAST_CKPT'] = last_ckpt
yaml.safe_dump(conf, f)
if validate:
trainer.validate(model, datamodule= biovid, ckpt_path=checkpoint if load_from_checkpoint else None)
# if test:
# # each predict 200 videos
# # 128
# model.sample_output_dir = os.path.join(conf['DIFFUSION']['sample_output_dir'], "128")
# os.makedirs(model.sample_output_dir, exist_ok=True)
# trainer.test(model, datamodule= biovid, ckpt_path=checkpoint if load_from_checkpoint else None)
# # 640
# model.sample_output_dir = os.path.join(conf['DIFFUSION']['sample_output_dir'], "640")
# os.makedirs(model.sample_output_dir, exist_ok=True)
# trainer.test(model, datamodule= biovid, ckpt_path=checkpoint if load_from_checkpoint else None)