Skip to content

Commit

Permalink
Update ML_Proj
Browse files Browse the repository at this point in the history
  • Loading branch information
ake123 authored May 6, 2021
1 parent c49d33c commit 8aeb764
Showing 1 changed file with 0 additions and 44 deletions.
44 changes: 0 additions & 44 deletions ML_Proj
Original file line number Diff line number Diff line change
@@ -1,48 +1,4 @@

def model_train_save(train_data):
Train_df = pd.read_csv(train_data,header = 0, delimiter = ',', encoding="iso-8859-1")
X_train = Train_df.text
y_train = Train_df.IndustryCategory
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(X_train)
X_train = tokenizer.texts_to_sequences(X_train)
vocab_size = len(tokenizer.word_index) + 1 # Adding 1 because of reserved 0 index
maxlen = 100
X_train = pad_sequences(X_train, padding='post', maxlen=maxlen)
encoder = LabelEncoder()
encoder.fit(y_train)
y_train = encoder.transform(y_train)
num_classes = np.max(y_train) + 1
y_train = utils.to_categorical(y_train, num_classes)
embedding_dim = 50
model = Sequential()
model.add(layers.Embedding(input_dim=vocab_size, output_dim=embedding_dim, input_length=maxlen))
model.add(layers.Flatten())
model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(num_classes, activation='sigmoid'))
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
model.summary()
history = model.fit(np.array(X_train), np.array(y_train),epochs=2,verbose=False,batch_size=10)
loss, Training_accuracy = model.evaluate(X_train, y_train, verbose=False)
print("Training Accuracy: {:.4f}".format(Training_accuracy))
# serialize model to JSON
# the keras model which is trained is defined as 'model'
model_json = model.to_json()
with open("model_num.json", "w") as json_file:
json_file.write(model_json)

# serialize weights to HDF5
model.save_weights("model_num.h5")
# load json and create model
json_file = open('model_num.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model_num.h5")
#print("Loaded model from disk")
return (loaded_model.save('model_num.hdf5'))

def predict(test_data):
Test_df = pd.read_csv(test_data,header = 0, delimiter = ',', encoding="iso-8859-1")
X_test = Test_df.text
Expand Down

0 comments on commit 8aeb764

Please sign in to comment.