-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #1 from brilhana/develop
Refactored main classes, add base runner
- Loading branch information
Showing
17 changed files
with
375 additions
and
102 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
name: Upload Python Package | ||
|
||
on: | ||
release: | ||
types: [published] | ||
|
||
permissions: | ||
contents: read | ||
|
||
jobs: | ||
deploy: | ||
|
||
runs-on: ubuntu-latest | ||
|
||
steps: | ||
- uses: actions/checkout@v3 | ||
- name: Set up Python | ||
uses: actions/setup-python@v3 | ||
with: | ||
python-version: '3.x' | ||
- name: Install dependencies | ||
run: | | ||
python -m pip install --upgrade pip | ||
pip install build | ||
- name: Build package | ||
run: python -m build | ||
- name: Publish package | ||
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29 | ||
with: | ||
user: __token__ | ||
password: ${{ secrets.PYPI_API_TOKEN }} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -48,7 +48,7 @@ coverage.xml | |
*.cover | ||
*.py,cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
.pY_test_cache/ | ||
cover/ | ||
|
||
# Translations | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,238 @@ | ||
import random | ||
import time | ||
|
||
import numpy as np | ||
import pandas as pd | ||
|
||
from quantnet.baselines import ( | ||
BuyAndHold, | ||
CrossSectionalMomentum, | ||
RiskParity, | ||
TimeSeriesMomentum, | ||
) | ||
from quantnet.utils import calc_transaction_costs | ||
|
||
|
||
class QuantNet: | ||
def __init__(self, seed=999999999): | ||
np.random.seed(seed) | ||
random.seed(seed) | ||
|
||
self.data_config = { | ||
"data_path": ".\\Tasks\\", | ||
"region": ["Asia and Pacific", "Europe", "Americas", "MEA"], | ||
"Europe": [ | ||
"Europe_AEX", | ||
"Europe_ASE", | ||
"Europe_ATX", | ||
"Europe_BEL20", | ||
"Europe_BUX", | ||
"Europe_BVLX", | ||
"Europe_CAC", | ||
"Europe_CYSMMAPA", | ||
"Europe_DAX", | ||
"Europe_HEX", | ||
"Europe_IBEX", | ||
"Europe_ISEQ", | ||
"Europe_KFX", | ||
"Europe_OBX", | ||
"Europe_OMX", | ||
"Europe_SMI", | ||
"Europe_UKX", | ||
"Europe_VILSE", | ||
"Europe_WIG20", | ||
"Europe_XU100", | ||
"Europe_SOFIX", | ||
"Europe_SBITOP", | ||
"Europe_PX", | ||
"Europe_CRO", | ||
], | ||
"Asia and Pacific": [ | ||
"Asia and Pacific_AS51", | ||
"Asia and Pacific_FBMKLCI", | ||
"Asia and Pacific_HSI", | ||
"Asia and Pacific_JCI", | ||
"Asia and Pacific_KOSPI", | ||
"Asia and Pacific_KSE100", | ||
"Asia and Pacific_NIFTY", | ||
"Asia and Pacific_NKY", | ||
"Asia and Pacific_NZSE50FG", | ||
"Asia and Pacific_PCOMP", | ||
"Asia and Pacific_STI", | ||
"Asia and Pacific_SHSZ300", | ||
"Asia and Pacific_TWSE", | ||
], | ||
"Americas": [ | ||
"Americas_IBOV", | ||
"Americas_MEXBOL", | ||
"Americas_MERVAL", | ||
"Americas_SPTSX", | ||
"Americas_SPX", | ||
"Americas_RTY", | ||
], | ||
"MEA": [ | ||
"MEA_DFMGI", | ||
"MEA_DSM", | ||
"MEA_EGX30", | ||
"MEA_FTN098", | ||
"MEA_JOSMGNFF", | ||
"MEA_KNSMIDX", | ||
"MEA_KWSEPM", | ||
"MEA_MOSENEW", | ||
"MEA_MSM30", | ||
"MEA_NGSE30", | ||
"MEA_PASISI", | ||
"MEA_SASEIDX", | ||
"MEA_SEMDEX", | ||
"MEA_TA-35", | ||
"MEA_TOP40", | ||
], | ||
"additional_data_path": "_all_assets_data.pkl.gz", | ||
} | ||
|
||
self.problem_config = { | ||
"export_path": "./Results/", | ||
"val_period": 0, | ||
"holdout_period": 756, | ||
} | ||
|
||
self.model_config = { | ||
"baseline": "risk_parity", | ||
"buy_and_hold": {}, | ||
"risk_parity": {"window": 252}, | ||
"ts_mom": {"window": 252}, | ||
"csec_mom": {"window": 252, "fraction": 0.33}, | ||
} | ||
|
||
self.export_label = ( | ||
"val_period_" | ||
+ str(self.problem_config["val_period"]) | ||
+ "_testperiod_" | ||
+ str(self.problem_config["holdout_period"]) | ||
+ "_baseline_" | ||
+ self.model_config["baseline"] | ||
) | ||
|
||
self.data_config["export_label"] = self.export_label | ||
self.problem_config["export_label"] = self.export_label | ||
self.model_config["export_label"] = self.export_label | ||
self.model_config["export_path"] = self.problem_config["export_path"] | ||
|
||
self.X_train_tasks, self.X_val_tasks, self.X_test_tasks = self.get_data( | ||
self.data_config, self.problem_config, self.model_config | ||
) | ||
|
||
def train(self): | ||
if self.model_config["baseline"] == "buy_and_hold": | ||
trad_strat = BuyAndHold(self.X_train_tasks, self.model_config) | ||
add_label = [""] * len(self.data_config["region"]) | ||
|
||
elif self.model_config["baseline"] == "risk_parity": | ||
trad_strat = RiskParity(self.X_train_tasks, self.model_config) | ||
add_label = [""] * len(self.data_config["region"]) | ||
|
||
elif self.model_config["baseline"] == "ts_mom": | ||
trad_strat = TimeSeriesMomentum(self.X_train_tasks, self.model_config) | ||
add_label = [""] * len(self.data_config["region"]) | ||
|
||
elif self.model_config["baseline"] == "csec_mom": | ||
trad_strat = CrossSectionalMomentum(self.X_train_tasks, self.model_config) | ||
add_label = [""] * len(self.data_config["region"]) | ||
|
||
to_add_label = {} | ||
|
||
for lab, region in zip(add_label, self.data_config["region"]): | ||
to_add_label[region] = lab | ||
|
||
start = time() | ||
trad_strat.train() | ||
|
||
print(time() - start) | ||
|
||
self.X_train_signal = trad_strat.predict(self.X_train_tasks) | ||
self.X_val_signal = trad_strat.predict(self.X_val_tasks) | ||
self.X_test_signal = trad_strat.predict(self.X_test_tasks) | ||
|
||
def predict(self): | ||
results = True | ||
|
||
for region in self.data_config["region"]: | ||
region_task_paths = [ | ||
t + "_all_assets_data.pkl.gz" for t in self.data_config[region] | ||
] | ||
|
||
metrics = True | ||
|
||
for tk, tk_path in zip(self.data_config[region], region_task_paths): | ||
pred_train = self.X_train_signal[region][tk][:-1, :] | ||
pred_val = self.X_val_signal[region][tk][:-1, :] | ||
pred_test = self.X_test_signal[region][tk][:-1, :] | ||
|
||
Y_train = self.X_train_tasks[region][tk][1:, :] | ||
Y_val = self.X_val_tasks[region][tk][1:, :] | ||
Y_test = self.X_test_tasks[region][tk][1:, :] | ||
|
||
df_train_ret = np.multiply( | ||
pred_train, Y_train | ||
) - calc_transaction_costs(pred_train) | ||
df_val_ret = np.multiply(pred_val, Y_val) - calc_transaction_costs( | ||
pred_val | ||
) | ||
df_test_ret = np.multiply(pred_test, Y_test) - calc_transaction_costs( | ||
pred_test | ||
) | ||
|
||
df = pd.read_pickle(self.data_config["data_path"] + tk_path) | ||
df_train_ret = pd.DataFrame(df_train_ret, columns=df.columns) | ||
df_train_metrics = self.compute_performance_metrics(df_train_ret) | ||
df_train_metrics["exchange"] = tk | ||
|
||
df_val_ret = pd.DataFrame(df_val_ret, columns=df.columns) | ||
df_val_metrics = self.compute_performance_metrics(df_val_ret) | ||
df_val_metrics["exchange"] = tk | ||
|
||
df_test_ret = pd.DataFrame(df_test_ret, columns=df.columns) | ||
df_test_metrics = self.compute_performance_metrics(df_test_ret) | ||
df_test_metrics["exchange"] = tk | ||
|
||
if metrics: | ||
all_df_train_metrics = df_train_metrics.copy() | ||
all_df_val_metrics = df_val_metrics.copy() | ||
all_df_test_metrics = df_test_metrics.copy() | ||
z = False | ||
else: | ||
all_df_train_metrics = pd.concat( | ||
[all_df_train_metrics, df_train_metrics], axis=0 | ||
) | ||
all_df_val_metrics = pd.concat( | ||
[all_df_val_metrics, df_val_metrics], axis=0 | ||
) | ||
all_df_test_metrics = pd.concat( | ||
[all_df_test_metrics, df_test_metrics], axis=0 | ||
) | ||
|
||
all_df_train_metrics["region"] = region | ||
all_df_train_metrics["set"] = "train" | ||
all_df_val_metrics["region"] = region | ||
all_df_val_metrics["set"] = "val" | ||
all_df_test_metrics["region"] = region | ||
all_df_test_metrics["set"] = "test" | ||
|
||
pd.concat( | ||
[all_df_train_metrics, all_df_val_metrics, all_df_test_metrics], axis=0 | ||
).to_csv( | ||
self.problem_config["export_path"] | ||
+ region | ||
+ "_" | ||
+ self.problem_config["export_label"] | ||
+ self.to_add_label[region] | ||
+ ".csv" | ||
) | ||
|
||
if results: | ||
global_df_test_metrics = all_df_test_metrics.copy() | ||
results = False | ||
else: | ||
global_df_test_metrics = pd.concat( | ||
[global_df_test_metrics, all_df_test_metrics.copy()], axis=0 | ||
) |
Oops, something went wrong.