Skip to content

Latest commit

 

History

History
39 lines (31 loc) · 1.46 KB

README.md

File metadata and controls

39 lines (31 loc) · 1.46 KB

Triton Server Ensemble

This is the triton server set up with ensemle methods.

Note: need to create model repo in /data/model_repo.

List for model in model repo

  1. Cell Counting Faster RCNN Model
  2. Post Processing Python Wrapper
  3. Ensemble Model with combined both cell counting and post processing models.

To Build for custom Python Backend

Note: Triton has pre-build for python version 3.10. So, no need to rebuild the python backend for triton server if you are using python 3.10. If you are using different version of python then you need to build the python backend for triton server.

git clone https://github.com/triton-inference-server/python_backend -b r<xx.yy>	# currently we are using r24.01
cd python_backend
# for GPU make sure -DTRITON_ENABLE_GPU=ON
# for CPU make sure -DTRITON_ENABLE_GPU=OFF
mkdir build
cd build
cmake -DTRITON_ENABLE_GPU=ON -DTRITON_BACKEND_REPO_TAG=r24.01 -DTRITON_COMMON_REPO_TAG=r24.01 -DTRITON_CORE_REPO_TAG=r24.01 -DCMAKE_INSTALL_PREFIX:PATH=/data/model_repo/triton_post_process/install ..
make install

To create tar file of the custom env for triton server

conda create -n tritonserver python=3.10 -y
conda activate tritonserver
pip install tensorflow 
conda install -c conda-forge libstdcxx-ng=12 -y
conda-pack

To Run

docker run --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v /data/model_repo:/model_repo nvcr.io/nvidia/tritonserver:24.01-py3 tritonserver --model-repository=/model_repo