Skip to content

This is the triton server set up with ensemle methods.

Notifications You must be signed in to change notification settings

alexsnow348/ensemble_triton

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Triton Server Ensemble

This is the triton server set up with ensemle methods.

Note: need to create model repo in /data/model_repo.

List for model in model repo

  1. Cell Counting Faster RCNN Model
  2. Post Processing Python Wrapper
  3. Ensemble Model with combined both cell counting and post processing models.

To Build for custom Python Backend

Note: Triton has pre-build for python version 3.10. So, no need to rebuild the python backend for triton server if you are using python 3.10. If you are using different version of python then you need to build the python backend for triton server.

git clone https://github.com/triton-inference-server/python_backend -b r<xx.yy>	# currently we are using r24.01
cd python_backend
# for GPU make sure -DTRITON_ENABLE_GPU=ON
# for CPU make sure -DTRITON_ENABLE_GPU=OFF
mkdir build
cd build
cmake -DTRITON_ENABLE_GPU=ON -DTRITON_BACKEND_REPO_TAG=r24.01 -DTRITON_COMMON_REPO_TAG=r24.01 -DTRITON_CORE_REPO_TAG=r24.01 -DCMAKE_INSTALL_PREFIX:PATH=/data/model_repo/triton_post_process/install ..
make install

To create tar file of the custom env for triton server

conda create -n tritonserver python=3.10 -y
conda activate tritonserver
pip install tensorflow 
conda install -c conda-forge libstdcxx-ng=12 -y
conda-pack

To Run

docker run --rm -p 8000:8000 -p 8001:8001 -p 8002:8002 -v /data/model_repo:/model_repo nvcr.io/nvidia/tritonserver:24.01-py3 tritonserver --model-repository=/model_repo

About

This is the triton server set up with ensemle methods.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published