- Pengenalan Inteligensi Buatan & Agen Rasional
- Classification: Decision Tree
- Classification: k-NN
- Praktik Klasifikasi
- Classification: Neural Networks
- Regression: Linear
- Evaluation Metrics
- Regression: Non-linear
- Clustering: k-Means
- Praktik Regresi & Clustering
- Ensemble Learning
- Searching: Uninformed Search
- Searching: Informed Search
- Local Search & Optimization: Hill Climbing
=== UTS ===
- Search: Uninformed Search & Dynamic Programming
- Search: Informed Search
- Search: Genetic Algorithm
- MDP: Markov Decision Processes^
- MDP: Value Iteration^
- MDP: Reinforcement Learning^
- Games: Minimax, Expectimax, Evaluation Functions, Alpha-Beta Pruning^
- Games: TD Learning, Game Theory^
- Bayes: Bayesian Networks^
- Bayes: Hidden Markov Models^
- Bayes: Learning Bayesian Networks^
- Natural Language Processing
- Computer Vision
- Kuliah Tamu: Ethical AI
=== UAS ===
^ Materi-materi ini diambil dari Stanford CS221: Artificial Intelligence^^
^^ Link mungkin tidak berfungsi di masa yang akan datang