-
Notifications
You must be signed in to change notification settings - Fork 218
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
118 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import json | ||
import os | ||
import random | ||
|
||
import numpy as np | ||
import transformers | ||
from tqdm import tqdm | ||
from rouge import Rouge | ||
|
||
from federatedscope.core.configs.config import global_cfg | ||
from federatedscope.core.cmd_args import parse_args, parse_client_cfg | ||
from federatedscope.core.auxiliaries.utils import setup_seed | ||
from federatedscope.core.auxiliaries.logging import update_logger | ||
from federatedscope.core.data.utils import download_url | ||
from federatedscope.llm.misc.fschat import FSChatBot | ||
|
||
transformers.logging.set_verbosity(40) | ||
|
||
DEBUG = False | ||
|
||
rouge = Rouge() | ||
|
||
|
||
def rouge_score(hyps, refs): | ||
try: | ||
rouge_score = rouge.get_scores(hyps, refs)[0]['rouge-l']['f'] | ||
except ValueError: | ||
return 0.0 | ||
return rouge_score | ||
|
||
|
||
def load_data(file_path, | ||
instruction='instruction', | ||
input='input', | ||
output='output', | ||
category='category'): | ||
|
||
# Format: [{'instruction': ..., 'input': ..., 'output':...}] | ||
with open(file_path, 'r', encoding="utf-8") as f: | ||
list_data_dict = json.load(f) | ||
|
||
# Replace key | ||
new_list_data_dict = [] | ||
list_data_dict = list_data_dict["Instances"] | ||
|
||
num_samples = int(len(list_data_dict) * 0.02) | ||
chosen_list_data_dict = random.sample(list_data_dict, num_samples) | ||
|
||
for item in chosen_list_data_dict: | ||
new_item = dict( | ||
instruction=item[instruction] if instruction in item else None, | ||
input=item[input] if input in item else None, | ||
output=item[output][0] if output in item else None, | ||
category=item[category] if category in item else None) | ||
new_list_data_dict.append(new_item) | ||
return new_list_data_dict | ||
|
||
|
||
def main(): | ||
init_cfg = global_cfg.clone() | ||
args = parse_args() | ||
|
||
if args.cfg_file: | ||
init_cfg.merge_from_file(args.cfg_file) | ||
cfg_opt, client_cfg_opt = parse_client_cfg(args.opts) | ||
init_cfg.merge_from_list(cfg_opt) | ||
|
||
update_logger(init_cfg, clear_before_add=True) | ||
setup_seed(init_cfg.seed) | ||
|
||
# load your finetuned model (saved as xxx.ckpt) | ||
# in yaml file federate.save_to | ||
fschatbot = FSChatBot(init_cfg) | ||
|
||
test_tasks_fp = os.path.join( | ||
init_cfg.data.root, | ||
"natural-instructions-2.8/splits/xlingual/test_tasks.txt") | ||
|
||
if not os.path.exists(test_tasks_fp): | ||
download_url( | ||
'https://github.com/allenai/natural-instructions/archive/refs' | ||
'/tags/v2.8.zip', init_cfg.data.root) | ||
print("Please unzip the data, and rerun.") | ||
return | ||
|
||
test_tasks = [] | ||
with open(test_tasks_fp, 'r') as f: | ||
while True: | ||
line = f.readline() | ||
if not line: | ||
break | ||
test_tasks.append(line.strip()) | ||
|
||
list_data_dict = [] | ||
for task in test_tasks: | ||
fp = os.path.join(init_cfg.data.root, "natural-instructions-2.8/tasks", | ||
task + ".json") | ||
list_data_dict.extend(load_data(fp)) | ||
|
||
answers = [] | ||
for sample in tqdm(list_data_dict): | ||
input_text = sample['input'] | ||
generate_kwargs = dict(max_new_tokens=256, top_p=0.95, temperature=0.8) | ||
model_answer = fschatbot.generate(input_text, generate_kwargs) | ||
|
||
rougel_cor = rouge_score(model_answer, sample['output']) | ||
answers.append(rougel_cor) | ||
if DEBUG: | ||
print(f'Full input_text:\n{input_text}\n\n') | ||
print(f'Question: {sample["input"]}\n\n' | ||
f'Answers: {model_answer}\n\n') | ||
|
||
print(f'Num of total question: {len(answers)}, ' | ||
f'Average score: {np.average(answers)}.') | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |