-
Notifications
You must be signed in to change notification settings - Fork 1.8k
Backpressure
限流控制,又称 反压 (backpressure), 这个概念现在在大数据中非常火爆, 尤其是最近Heron/Spark都实现了这个功能。其实在jstorm 0.9.0 时,底层netty的同步模式,即可做到限流控制, 即当接收端能处理多少tuple, 发送端才能发送多少tuple, 但随着大面积使用, 发现netty的同步模式会存在死锁问题, 故这种方式并没有被大量使用。
后来自2015年6月,twitter发布了heron的一篇论文, 描叙了,当下游处理速度更不上上游发送速度时, 他们采取了一种暴力手段,立即停止spout的发送。 这种方式, jstorm拿过来进行压测, 发现存在大量问题, 当下游出现阻塞时, 上游停止发送, 下游消除阻塞后,上游又开闸放水,过了一会儿,下游又阻塞,上游又限流, 如此反复, 整个数据流一直处在一个颠簸状态。
真正合适的状态时, 上游降速到一个特定的值后, 下游的处理速度刚刚跟上上游的速度
jstorm的限流机制, 当下游bolt发生阻塞时, 并且阻塞task的比例超过某个比例时(现在默认设置为0.1), 即假设一个component有100个并发,当这个component 超过10个task 发生阻塞时,才会触发启动反压限流
在jstorm 连续4次采样周期中采样,队列情况,当队列超过80%(可以设置)时,即可认为该task处在阻塞状态
根据阻塞component,进行DAG 向上推算,直到推算到他的源头spout, 并将topology的一个状态位,设置为 “限流状态”
当task出现阻塞时,他会将自己的执行线程的执行时间, 传给topology master, 当触发阻塞后, topology master会把这个执行时间传给spout, 于是, spout每发送一个tuple,就会等待这个执行时间。storm 社区的人想通过动态调整max_pending达到这种效果,其实这种做法根本无效。
当spout降速后, 发送过阻塞命令的task 检查队列水位连续4次低于0.05时, 发送解除反应命令到topology master, topology master 发送提速命令给所有的spout, 于是spout 每发送一个tuple的等待时间--, 当spout的等待时间降为0时, spout会不断发送“解除限速”命令给 topology master, 而topology master确定所有的降速的spout都发了解除限速命令时, 将topology状态设置为正常,标志真正解除限速
## 反压总开关
topology.backpressure.enable: true
## 高水位 -- 当队列使用量超过这个值时,认为阻塞
topology.backpressure.water.mark.high: 0.8
## 低水位 -- 当队列使用量低于这个量时, 认为可以解除阻塞
topology.backpressure.water.mark.low: 0.05
## 阻塞比例 -- 当阻塞task数/这个component并发 的比例高于这值时,触发反压
topology.backpressure.coordinator.trigger.ratio: 0.1
## 反压采样周期, 单位ms
topology.backpressure.check.interval: 1000
## 采样次数和采样比例, 即在连续4次采样中, 超过(不包含)(4 *0.75)次阻塞才能认为真正阻塞, 超过(不包含)(4 * 0.75)次解除阻塞才能认为是真正解除阻塞
topology.backpressure.trigger.sample.rate: 0.75
topology.backpressure.trigger.sample.number: 4
jstorm update_topology topology-name -conf confpath
confpath 放置 上叙的配置