generated from HTR-United/template-htr-united-datarepo
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
saving files from experiments with the dataset
- Loading branch information
Showing
18 changed files
with
1,484 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,61 @@ | ||
┏━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━┓ | ||
┃ ┃ Name ┃ Type ┃ Params ┃ In sizes ┃ Out sizes ┃ | ||
┡━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━┩ | ||
│ 0 │ val_cer │ CharErrorRate │ 0 │ ? │ ? │ | ||
│ 1 │ net │ MultiParamSequential │ 4.0 M │ [[1, 1, 120, 400], '?'] │ [[1, 121, 1, 50], '?'] │ | ||
│ 2 │ net.C_0 │ ActConv2D │ 1.3 K │ [[1, 1, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ | ||
│ 3 │ net.Do_1 │ Dropout │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 120, 400], '?'] │ | ||
│ 4 │ net.Mp_2 │ MaxPool │ 0 │ [[1, 32, 120, 400], '?'] │ [[1, 32, 60, 200], '?'] │ | ||
│ 5 │ net.C_3 │ ActConv2D │ 40.0 K │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ | ||
│ 6 │ net.Do_4 │ Dropout │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 60, 200], '?'] │ | ||
│ 7 │ net.Mp_5 │ MaxPool │ 0 │ [[1, 32, 60, 200], '?'] │ [[1, 32, 30, 100], '?'] │ | ||
│ 8 │ net.C_6 │ ActConv2D │ 55.4 K │ [[1, 32, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ | ||
│ 9 │ net.Do_7 │ Dropout │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 30, 100], '?'] │ | ||
│ 10 │ net.Mp_8 │ MaxPool │ 0 │ [[1, 64, 30, 100], '?'] │ [[1, 64, 15, 50], '?'] │ | ||
│ 11 │ net.C_9 │ ActConv2D │ 110 K │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ | ||
│ 12 │ net.Do_10 │ Dropout │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 64, 15, 50], '?'] │ | ||
│ 13 │ net.S_11 │ Reshape │ 0 │ [[1, 64, 15, 50], '?'] │ [[1, 960, 1, 50], '?'] │ | ||
│ 14 │ net.L_12 │ TransposedSummarizingRNN │ 1.9 M │ [[1, 960, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ | ||
│ 15 │ net.Do_13 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ | ||
│ 16 │ net.L_14 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ | ||
│ 17 │ net.Do_15 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ | ||
│ 18 │ net.L_16 │ TransposedSummarizingRNN │ 963 K │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ | ||
│ 19 │ net.Do_17 │ Dropout │ 0 │ [[1, 400, 1, 50], '?'] │ [[1, 400, 1, 50], '?'] │ | ||
│ 20 │ net.O_18 │ LinSoftmax │ 48.5 K │ [[1, 400, 1, 50], '?'] │ [[1, 121, 1, 50], '?'] │ | ||
└────┴───────────┴──────────────────────────┴────────┴──────────────────────────┴──────────────────────────┘ | ||
Trainable params: 4.0 M | ||
Non-trainable params: 0 | ||
Total params: 4.0 M | ||
Total estimated model params size (MB): 16 | ||
stage 0/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.82457 early_stopping: 0/10 0.82457 | ||
stage 1/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.84399 early_stopping: 0/10 0.84399 | ||
stage 2/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.84616 early_stopping: 0/10 0.84616 | ||
stage 3/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.86558 early_stopping: 0/10 0.86558 | ||
stage 4/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:39 val_accuracy: 0.86369 early_stopping: 1/10 0.86558 | ||
stage 5/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89819 early_stopping: 0/10 0.89819 | ||
stage 6/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89097 early_stopping: 1/10 0.89819 | ||
stage 7/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89955 early_stopping: 0/10 0.89955 | ||
stage 8/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:39 val_accuracy: 0.90316 early_stopping: 0/10 0.90316 | ||
stage 9/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89892 early_stopping: 1/10 0.90316 | ||
stage 10/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:40 val_accuracy: 0.89205 early_stopping: 2/10 0.90316 | ||
stage 11/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:41 val_accuracy: 0.88889 early_stopping: 3/10 0.90316 | ||
stage 12/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90506 early_stopping: 0/10 0.90506 | ||
stage 13/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91364 early_stopping: 0/10 0.91364 | ||
stage 14/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90108 early_stopping: 1/10 0.91364 | ||
stage 15/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90199 early_stopping: 2/10 0.91364 | ||
stage 16/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90867 early_stopping: 3/10 0.91364 | ||
stage 17/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91418 early_stopping: 0/10 0.91418 | ||
stage 18/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90687 early_stopping: 1/10 0.91418 | ||
stage 19/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.89494 early_stopping: 2/10 0.91418 | ||
stage 20/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.92385 early_stopping: 0/10 0.92385 | ||
stage 21/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90262 early_stopping: 1/10 0.92385 | ||
stage 22/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90750 early_stopping: 2/10 0.92385 | ||
stage 23/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91518 early_stopping: 3/10 0.92385 | ||
stage 24/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:43 val_accuracy: 0.90081 early_stopping: 4/10 0.92385 | ||
stage 25/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91048 early_stopping: 5/10 0.92385 | ||
stage 26/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.91915 early_stopping: 6/10 0.92385 | ||
stage 27/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90018 early_stopping: 7/10 0.92385 | ||
stage 28/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90696 early_stopping: 8/10 0.92385 | ||
stage 29/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.89756 early_stopping: 9/10 0.92385 | ||
stage 30/∞ ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 569/569 0:00:00 0:00:42 val_accuracy: 0.90903 early_stopping: 10/10 0.92385 | ||
Moving best model /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraire2_ft_MMCFR_20.mlmodel (0.9238482713699341) to /home/ROCQ/almanach/achague/peraire/peraire-ground-truth/models/peraire2_ft_MMCFR_best.mlmodel |
Oops, something went wrong.