R plotting functions to plot gene expression data of single-cell data.
For a python port of ktplots
, please check out my other repository.
You can install the package via devtools::install_github()
function in R
if (!requireNamespace("devtools", quietly = TRUE))
install.packages("devtools")
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
devtools::install_github('zktuong/ktplots', dependencies = TRUE)
library(ktplots)
There is a test dataset in SingleCellExperiment
format to test the functions.
library(SingleCellExperiment)
data(kidneyimmune)
#Some functions accept Seurat objects too.
The data is downsampled from the kidney cell atlas.
For more info, please see Stewart et al. kidney single cell data set published in Science 2019.
This function seems like it's the most popular so I moved it up! Please see below for alternative visualisation options.
Generates a dot plot after CellPhoneDB analysis via specifying the query celltypes and genes. The difference compared to the original cellphonedb plot
is that this is totally customizable!
The plotting is largely determined by the format of the meta file provided to CellPhoneDB analysis.
To run, you will need to load in the means.txt and pvals.txt from the analysis. If you are using results from cellphonedb deg_analysis
mode from version >= 3, the pvalues.txt
is relevant_interactions.txt
and also add degs_analysis = TRUE
into all the functions below.
# pvals <- read.delim("pvalues.txt", check.names = FALSE)
# means <- read.delim("means.txt", check.names = FALSE)
# I've provided an example dataset
data(cpdb_output)
plot_cpdb(cell_type1 = 'B cell', cell_type2 = 'CD4T cell', scdata = kidneyimmune,
idents = 'celltype', # column name where the cell ids are located in the metadata
split.by = 'Experiment', # column name where the grouping column is. Optional.
means = means, pvals = pvals,
genes = c("XCR1", "CXCL10", "CCL5")) +
small_axis(fontsize = 3) + small_grid() + small_guide() + small_legend(fontsize = 2) # some helper functions included in ktplots to help with the plotting
You can also try specifying gene.family
option which will grep some pre-determined genes.
plot_cpdb(cell_type1 = 'B cell', cell_type2 = 'CD4T cell', scdata = kidneyimmune,
idents = 'celltype', means = means, pvals = pvals, split.by = 'Experiment',
gene.family = 'chemokines') + small_guide() + small_axis() + small_legend(keysize=.5)
plot_cpdb(cell_type1 = 'B cell', cell_type2 = 'CD4T cell', scdata = kidneyimmune,
idents = 'celltype', means = means, pvals = pvals, split.by = 'Experiment',
gene.family = 'chemokines', col_option = "maroon", highlight = "blue") + small_guide() + small_axis() + small_legend(keysize=.5)
plot_cpdb(cell_type1 = 'B cell', cell_type2 = 'CD4T cell', scdata = kidneyimmune,
idents = 'celltype', means = means, pvals = pvals, split.by = 'Experiment',
gene.family = 'chemokines', col_option = viridis::cividis(50)) + small_guide() + small_axis() + small_legend(keysize=.5)
plot_cpdb(cell_type1 = 'B cell', cell_type2 = 'CD4T cell', scdata = kidneyimmune,
idents = 'celltype', means = means, pvals = pvals, split.by = 'Experiment',
gene.family = 'chemokines', noir = TRUE) + small_guide() + small_axis() + small_legend(keysize=.5)
A new style to plot inspired from squidpy.pl.ligrec
where significant interactions are shown as outline instead.
plot_cpdb(cell_type1 = 'B cell', cell_type2 = 'CD4T cell', scdata = kidneyimmune,
idents = 'celltype', means = means, pvals = pvals, split.by = 'Experiment',
gene.family = 'chemokines', default_style = FALSE) + small_guide() + small_axis() + small_legend(keysize=.5)
if genes
and gene.family
are both not specified, the function will try to plot everything.
Specifying keep_significant_only
will only keep those that are p<0.05 (which you can try to adjust with p.adjust.method
).
You can now also specify more than 1 gene families:
p <- plot_cpdb("B cell", "CD4T cell", kidneyimmune, "celltype", means, pvals,
split.by = "Experiment", gene.family = c("Coinhibitory", "Costimulatory"),
cluster_rows = FALSE, # ensures that the families are separate
keep_significant_only = TRUE)
And also provide custom families as a data.frame
.
df = data.frame(set1 = c("CCR6", "CCL20"), set2 = c("CCL5", "CCR4"))
p <- plot_cpdb("B cell", "CD4T cell", kidneyimmune, "celltype", means, pvals,
split.by = "Experiment", gene.family = c("set1", "set2"), custom_gene_family =df,
keep_significant_only = TRUE)
For the split.by
option to work, the annotation in the meta file must be defined in the following format:
{split.by}_{idents}
so to set up an example vector, it would be something like:
annotation <- paste0(kidneyimmune$Experiment, '_', kidneyimmune$celltype)
The recommended way to use split.by
is to prepare the data with combine_cpdb
like in this example:
# Assume you have 2 cellphonedb runs, one where it's just naive and the other is treated, you will end up with 2 cellphonedb out folders
# remember, the celltype labels you provide to cellphonedb's meta.txt should already be like {split.by}_{idents}
# so the two meta.txt should look like:
# naive file
# ATTAGTCGATCGTAGT-1 naive_CD4Tcell
# ATTAGTGGATCGTAGT-1 naive_CD4Tcell
# ATTAGTCGACCGTAGT-1 naive_CD8Tcell
# ATTAGTCGATCGTAGT-1 naive_CD8Tcell
# ATGAGTCGATCGTAGT-1 naive_Bcell
# ATTAGTCGATCGTGGT-1 naive_Bcell
# treated file
# ATTAGTCAATCGTAGT-1 treated_CD4Tcell
# ATTAGTGGATCGTAGT-1 treated_CD4Tcell
# ATTAGTCGACCATAGT-1 treated_CD8Tcell
# ATTAGTAGATCGTAGT-1 treated_CD8Tcell
# ATGAGTCGATCGTAAT-1 treated_Bcell
# ATTAGTCGATCGTGAT-1 treated_Bcell
# one you have set that up correctly, you can then read in the files.
naive_means <- read.delim("naive_out/means.txt", check.names = FALSE)
naive_pvals <- read.delim("naive_out/pvalues.txt", check.names = FALSE)
naive_decon <- read.delim("naive_out/deconvoluted.txt", check.names = FALSE)
treated_means <- read.delim("treated_out/means.txt", check.names = FALSE)
treated_pvals <- read.delim("treated_out/pvalues.txt", check.names = FALSE)
treated_decon <- read.delim("treated_out/deconvoluted.txt", check.names = FALSE)
means <- combine_cpdb(naive_means, treated_means)
pvals <- combine_cpdb(naive_pvals, treated_pvals)
decon <- combine_cpdb(naive_decon, treated_decon)
plot_cpdb(...)
Generates a circos-style wire/arc/chord plot for cellphonedb results.
This function piggy-backs on the original plot_cpdb
function and generates the results like this:
Please help contribute to the interaction grouping list here!
Credits to Ben Stewart for coming up with the base code!
library(ktplots)
data(kidneyimmune)
data(cpdb_output2)
p <- plot_cpdb2(cell_type1 = 'B cell', cell_type2 = 'CD4T cell',
scdata = kidneyimmune,
idents = 'celltype', # column name where the cell ids are located in the metadata
means = means2,
pvals = pvals2,
deconvoluted = decon2, # new options from here on specific to plot_cpdb2
desiredInteractions = list(
c('CD4T cell', 'B cell'),
c('B cell', 'CD4T cell')),
interaction_grouping = interaction_annotation,
edge_group_colors = c(
"Activating" = "#e15759",
"Chemotaxis" = "#59a14f",
"Inhibitory" = "#4e79a7",
"Intracellular trafficking" = "#9c755f",
"DC_development" = "#B07aa1",
"Unknown" = "#e7e7e7"
),
node_group_colors = c(
"CD4T cell" = "red",
"B cell" = "blue"),
keep_significant_only = TRUE,
standard_scale = TRUE,
remove_self = TRUE
)
p
# code example but not using the example datasets
library(SingleCellExperiment)
library(reticulate)
library(ktplots)
ad=import('anndata')
adata = ad$read_h5ad('rna.h5ad')
counts <- Matrix::t(adata$X)
row.names(counts) <- row.names(adata$var)
colnames(counts) <- row.names(adata$obs)
sce <- SingleCellExperiment(list(counts = counts), colData = adata$obs, rowData = adata$var)
means <- read.delim('out/means.txt', check.names = FALSE)
pvalues <- read.delim('out/pvalues.txt', check.names = FALSE)
deconvoluted <- read.delim('out/deconvoluted.txt', check.names = FALSE)
interaction_grouping <- read.delim('interactions_groups.txt')
# > head(interaction_grouping)
# interaction role
# 1 ALOX5_ALOX5AP Activating
# 2 ANXA1_FPR1 Inhibitory
# 3 BTLA_TNFRSF14 Inhibitory
# 4 CCL5_CCR5 Chemotaxis
# 5 CD2_CD58 Activating
# 6 CD28_CD86 Activating
test <- plot_cpdb2(cell_type1 = "CD4_Tem|CD4_Tcm|CD4_Treg", # same usage style as plot_cpdb
cell_type2 = "cDC",
idents = 'fine_clustering',
split.by = 'treatment_group_1',
scdata = sce,
means = means,
pvals = pvalues,
deconvoluted = deconvoluted, # new options from here on specific to plot_cpdb2
gene_symbol_mapping = 'index', # column name in rowData holding the actual gene symbols if the row names is ENSG Ids. Might be a bit buggy
desiredInteractions = list(c('CD4_Tcm', 'cDC1'), c('CD4_Tcm', 'cDC2'), c('CD4_Tem', 'cDC1'), c('CD4_Tem', 'cDC2 '), c('CD4_Treg', 'cDC1'), c('CD4_Treg', 'cDC2')),
interaction_grouping = interaction_grouping,
edge_group_colors = c("Activating" = "#e15759", "Chemotaxis" = "#59a14f", "Inhibitory" = "#4e79a7", " Intracellular trafficking" = "#9c755f", "DC_development" = "#B07aa1"),
node_group_colors = c("CD4_Tcm" = "#86bc86", "CD4_Tem" = "#79706e", "CD4_Treg" = "#ff7f0e", "cDC1" = "#bcbd22" ,"cDC2" = "#17becf"),
keep_significant_only = TRUE,
standard_scale = TRUE,
remove_self = TRUE)
Generates a chord diagram inspired from CellChat's way of showing the data!
Usage is similar to plot_cpdb2
but with reduced options. Additional kwargs are passed to plot_cpdb
.
library(ktplots)
data(kidneyimmune)
data(cpdb_output2)
p <- plot_cpdb3(cell_type1 = 'B cell', cell_type2 = 'CD4T cell|MNPd',
scdata = kidneyimmune,
idents = 'celltype', # column name where the cell ids are located in the metadata
means = means2,
pvals = pvals2,
deconvoluted = decon2, # new options from here on specific to plot_cpdb3
keep_significant_only = TRUE,
standard_scale = TRUE,
remove_self = TRUE
)
p
New! Alternate way of showing the chord diagram for specific interactions!
Usage is similar to plot_cpdb3
but with additional required interaction
option. Additional kwargs are passed to plot_cpdb
.
library(ktplots)
data(kidneyimmune)
data(cpdb_output2)
p <- plot_cpdb4(
interaction = 'CLEC2D-KLRB1',
cell_type1 = 'NK', cell_type2 = 'Mast',
scdata = kidneyimmune,
idents = 'celltype',
means = means2,
pvals = pvals2,
deconvoluted = decon2,
keep_significant_only = TRUE,
standard_scale = TRUE,
)
p
or specify more than 1 interactions + only show specific cell-type type interactions!
plot_cpdb4(
interaction = c('CLEC2D-KLRB1', 'CD40-CD40LG'),
cell_type1 = 'NK|B', cell_type2 = 'Mast|CD4T',
scdata = kidneyimmune,
idents = 'celltype',
means = means2,
pvals = pvals2,
deconvoluted = decon2,
desiredInteractions = list(
c('NK cell', 'Mast cell'),
c('NK cell', 'NKT cell'),
c('NKT cell', 'Mast cell'),
c('B cell', 'CD4T cell')),
keep_significant_only = TRUE,
)
New! Ported the original heatmap plot to this pacakge as per the main cellphonedb repo. Uses pheatmap
internally. Colours indicate the number of significant interactions.
plot_cpdb_heatmap(kidneyimmune, 'celltype', pvals2, cellheight = 10, cellwidth = 10)
Plotting gene expression dot plots heatmaps.
# Note, this conflicts with tidyr devel version
geneDotPlot(scdata = kidneyimmune, # object
genes = c("CD68", "CD80", "CD86", "CD74", "CD2", "CD5"), # genes to plot
idents = "celltype", # column name in meta data that holds the cell-cluster ID/assignment
split.by = 'Project', # column name in the meta data that you want to split the plotting by. If not provided, it will just plot according to idents
standard_scale = TRUE) + # whether to scale expression values from 0 to 1. See ?geneDotPlot for other options
theme(strip.text.x = element_text(angle=0, hjust = 0, size =7)) + small_guide() + small_legend()
Hopefully you end up with something like this:
Ever wanted to ask if your gene(s) and/or prediction(s) of interests correlate spatially in vissium data? Now you can! disclaimer It might be buggy.
library(ggplot2)
scRNAseq <- Seurat::SCTransform(scRNAseq, verbose = FALSE) %>% Seurat::RunPCA(., verbose = FALSE) %>% Seurat::RunUMAP(., dims = 1:30, verbose = FALSE)
anchors <- Seurat::FindTransferAnchors(reference = scRNAseq, query = spatial, normalization.method = "SCT")
predictions.assay <- Seurat::TransferData(anchorset = anchors, refdata = scRNAseq$label, dims = 1:30, prediction.assay = TRUE, weight.reduction = spatial[["pca"]])
spatial[["predictions"]] <- predictions.assay
Seurat::DefaultAssay(spatial) <- "predictions"
Seurat::DefaultAssay(spatial) <- 'SCT'
pa <- Seurat::SpatialFeaturePlot(spatial, features = c('Tnfsf13b', 'Cd79a'), pt.size.factor = 1.6, ncol = 2, crop = TRUE) + viridis::scale_fill_viridis()
Seurat::DefaultAssay(spatial) <- 'predictions'
pb <- Seurat::SpatialFeaturePlot(spatial, features = 'Group1-3', pt.size.factor = 1.6, ncol = 2, crop = TRUE) + viridis::scale_fill_viridis()
p1 <- correlationSpot(spatial, genes = c('Tnfsf13b', 'Cd79a'), celltypes = 'Group1-3', pt.size.factor = 1.6, ncol = 2, crop = TRUE) + scale_fill_gradientn( colors = rev(RColorBrewer::brewer.pal(12, 'Spectral')),limits = c(-1, 1))
p2 <- correlationSpot(spatial, genes = c('Tnfsf13b', 'Cd79a'), celltypes = 'Group1-3', pt.size.factor = 1.6, ncol = 2, crop = TRUE, average_by_cluster = TRUE) + scale_fill_gradientn(colors = rev(RColorBrewer::brewer.pal(12, 'Spectral')),limits = c(-1, 1)) + ggtitle('correlation averaged across clusters')
cowplot::plot_grid(pa, pb, p1, p2, ncol = 2)
small_legend/small_guide/small_axis/small_grid/topright_legend/topleft_legend/bottomleft_legend/bottomright_legend
As shown in the examples above, these are some functions to quickly adjust the size and position of ggplots.
# for example
g <- Seurat::DimPlot(kidneyimmune, group.by = "celltype")
g1 <- g + small_legend() + small_guide() + small_axis() + bottomleft_legend()
library(patchwork)
g + g1
If you find these functions useful, please consider leaving a star, citing this repository, and/or citing the following DOI:
To cite a specific version of ktplots
, please follow the links on the zenodo repository. e.g. v1.2.3:
Zewen Kelvin Tuong. (2021). zktuong/ktplots: 1.2.3 (v1.2.3). Zenodo. https://doi.org/10.5281/zenodo.5717922
Thank you!