Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
Correction of a bug in the augmented Lagrangian updating scheme, and inclusion of a field variable to control the maximum value for the penalization.
  • Loading branch information
americocunhajr authored Dec 11, 2024
1 parent a6775a9 commit 860b063
Showing 1 changed file with 36 additions and 26 deletions.
62 changes: 36 additions & 26 deletions CEopt-1.0/CEopt.m
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
% [email protected]
%
% Originally programmed in: Jun 18, 2021
% Last updated in: Aug 15, 2024
% Last updated in: Dec 11, 2024
% -----------------------------------------------------------------
% This routine employs the Cross-entropy (CE) method to solve the
% following optimization problem:
Expand Down Expand Up @@ -74,6 +74,7 @@
% * NonlconAlgorithm : algorithm to handle nonlinear constraints
% * InitialPenalty : initial penalty value for the augmented Lagrangian
% * PenaltyFactor : factor by which the penalty parameter is increased
% * MaximumPenalty : maximum value for the penalty parameter
% * xmean : history of mean value over iterations
% * xmedian : history of median over iterations
% * xbest : history of best sample point over iterations
Expand Down Expand Up @@ -291,7 +292,8 @@
'q' ,10 , ...
'NonlconAlgorithm','AugLagLog', ...
'InitialPenalty' ,10 , ...
'PenaltyFactor' ,100 ...
'PenaltyFactor' ,100 , ...
'MaximumPenalty' ,+Inf ...
);

% assign values for undefined fields in CEstr
Expand Down Expand Up @@ -511,10 +513,8 @@ function CheckCEstr(CEstr)
CEstr.Fcount = Fcount;
CEstr.xmean(t,:) = xmean;
CEstr.xmedian(t,:) = xmedian;
%CEstr.xbest(t,:) = xbest;
CEstr.Fmean(t) = Fmean;
CEstr.Fmedian(t) = Fmedian;
%CEstr.Fbest(t) = Fbest;
CEstr.sigma(t,:) = sigma;
CEstr.ErrorS(t) = ErrorS;

Expand Down Expand Up @@ -569,15 +569,19 @@ function CheckCEstr(CEstr)
ExitFlag = 0; % termination condition flag

% initialize penalty parameters
Penalty = CEstr.InitialPenalty;
PenaltyFactor = CEstr.PenaltyFactor;
Penalty = CEstr.InitialPenalty;
PenaltyFactor = CEstr.PenaltyFactor;
MaximumPenalty = CEstr.MaximumPenalty;

% initialize Lagrange multipliers
[G0,H0] = nonlcon(xmean0);
if isempty(G0), G0 = 0.0; end
if isempty(H0), H0 = 0.0; end
lambdaG = zeros(size(G0));
lambdaH = zeros(size(H0));

% initialize constraint error
ErrorC = ComputeErrorC(G0,H0,lambdaG,lambdaH,Penalty,TolCon,1.0);

% preallocate memory for design variables samples
X = zeros(Nsamp,Nvars);
Expand Down Expand Up @@ -620,16 +624,20 @@ function CheckCEstr(CEstr)
% standard deviation error
[ErrorS,SmallErrorS] = ComputeErrorS(sigma,sigma0,TolAbs,TolRel);

% update Lagrange multipliers
[lambdaG,lambdaH,G,H] = ...
UpdateLagrangeMult(xbest,nonlcon,lambdaG,lambdaH,Penalty);

% constraint error
% evalute the constraints at xbest
[G,H] = nonlcon(xbest);

% evaluate the constraint error
[ErrorC,SmallErrorC] = ...
ComputeErrorC(G,H,lambdaG,lambdaH,Penalty,TolCon);
ComputeErrorC(G,H,lambdaG,lambdaH,Penalty,TolCon,ErrorC);

% update Lagrange multipliers
[lambdaG,lambdaH] = ...
UpdateLagrangeMult(G,H,lambdaG,lambdaH,Penalty);

% update pentalty parameter
Penalty = UpdatePenalty(Penalty,PenaltyFactor,SmallErrorC);
Penalty = ...
UpdatePenalty(Penalty,PenaltyFactor,MaximumPenalty,SmallErrorC);

% update old parameters
xmean0 = xmean;
Expand All @@ -654,10 +662,8 @@ function CheckCEstr(CEstr)
CEstr.Fcount = Fcount;
CEstr.xmean(t,:) = xmean;
CEstr.xmedian(t,:) = xmedian;
%CEstr.xbest(t,:) = xbest;
CEstr.Fmean(t) = Fmean;
CEstr.Fmedian(t) = Fmedian;
%CEstr.Fbest(t) = Fbest;
CEstr.sigma(t,:) = sigma;
CEstr.ErrorS(t) = ErrorS;
CEstr.ErrorC(t) = ErrorC;
Expand Down Expand Up @@ -833,11 +839,10 @@ function CheckCEstr(CEstr)
% -----------------------------------------------------------------
% UpdateLagrangeMult - update Lagrange multipliers
% -----------------------------------------------------------------
function [lambdaG,lambdaH,G,H] = ...
UpdateLagrangeMult(x,nonlcon,lambdaG,lambdaH,Penalty)
function [lambdaG,lambdaH] = ...
UpdateLagrangeMult(G,H,lambdaG,lambdaH,Penalty)

% nonlinear constraints at x
[G,H] = nonlcon(x);
% check the nonlinear constraints
if isempty(G), G = 0.0; end
if isempty(H), H = 0.0; end

Expand All @@ -853,28 +858,33 @@ function CheckCEstr(CEstr)
% ComputeErrorC - compute constraint error
% -----------------------------------------------------------------
function [ErrorC,SmallErrorC] = ...
ComputeErrorC(G,H,lambdaG,lambdaH,Penalty,TolCon)
ComputeErrorC(G,H,lambdaG,lambdaH,Penalty,TolCon,ErrorC0)

% check the nonlinear constraints
if isempty(G), G = 0.0; end
if isempty(H), H = 0.0; end

% constraints violation metrics
ViolationEq = max(abs(H));
ViolationIn = max(min(-G,lambdaG/Penalty));
ViolationEqNorm = norm(H,Inf);
ViolationInNorm = norm(min(-G,lambdaG/Penalty),Inf);

% constraints violation error
ErrorC = max(ViolationIn,ViolationEq);
ErrorC = max(ViolationEqNorm,ViolationInNorm);

% convergence indicator for constraint violation
SmallErrorC = abs(ErrorC) <= TolCon;
SmallErrorC = ErrorC <= TolCon*ErrorC0;
end
% -----------------------------------------------------------------

% -----------------------------------------------------------------
% UpdatePenalty - update penalty parameter
% -----------------------------------------------------------------
function Penalty = UpdatePenalty(Penalty,PenaltyFactor,SmallErrorC)
function Penalty = ...
UpdatePenalty(Penalty,PenaltyFactor,MaximumPenalty,SmallErrorC)

% update penalty parameter
if ~SmallErrorC
Penalty = PenaltyFactor*Penalty;
Penalty = min(PenaltyFactor*Penalty,MaximumPenalty);
end
end
% -----------------------------------------------------------------
Expand Down

0 comments on commit 860b063

Please sign in to comment.