A python library for working with data.world datasets.
This library makes it easy for data.world users to pull and work with data stored on data.world. Additionally, the library provides convenient wrappers for data.world APIs, allowing users to create and update datasets, add and modify files, etc, and possibly implement entire apps on top of data.world.
You can install it using pip
directly from PyPI:
pip install datadotworld
Optionally, you can install the library including pandas support:
pip install datadotworld[pandas]
If you use conda
to manage your python distribution, you can install from the community-maintained [conda-forge](https://conda-forge.github.io/) channel:
conda install -c conda-forge datadotworld-py
This library requires a data.world API authentication token to work.
Your authentication token can be obtained on data.world under Settings > Advanced
To configure the library, run the following command:
dw configure
Alternatively, tokens can be provided via the DW_AUTH_TOKEN
environment variable.
On MacOS or Unix machines, run (replacing <YOUR_TOKEN>>
below with the token obtained earlier):
export DW_AUTH_TOKEN=<YOUR_TOKEN>
The load_dataset()
function facilitates maintaining copies of datasets on the local filesystem.
It will download a given dataset's datapackage
and store it under ~/.dw/cache
. When used subsequently, load_dataset()
will use the copy stored on disk and will
work offline, unless it's called with force_update=True
.
Once loaded, a dataset (data and metadata) can be conveniently accessed via the object returned by load_dataset()
.
Start by importing the datadotworld
module:
import datadotworld as dw
Then, invoke the load_dataset()
function, to download a dataset and work with it locally.
For example:
intro_dataset = dw.load_dataset('jonloyens/an-intro-to-dataworld-dataset')
Dataset objects allow access to data via three different properties raw_data
, tables
and dataframes
.
Each of these properties is a mapping (dict) whose values are of type bytes
, list
and pandas.DataFrame
,
respectively. Values are lazy loaded and cached once loaded. Their keys are the names of the files
contained in the dataset.
For example:
>>> intro_dataset.dataframes
LazyLoadedDict({
'changelog': LazyLoadedValue(<pandas.DataFrame>),
'datadotworldbballstats': LazyLoadedValue(<pandas.DataFrame>),
'datadotworldbballteam': LazyLoadedValue(<pandas.DataFrame>)})
IMPORTANT: Not all files in a dataset are tabular, therefore some will be exposed via raw_data
only.
Tables are lists of rows, each represented by a mapping (dict) of column names to their respective values.
For example:
>>> stats_table = intro_dataset.tables['datadotworldbballstats']
>>> stats_table[0]
OrderedDict([('Name', 'Jon'),
('PointsPerGame', Decimal('20.4')),
('AssistsPerGame', Decimal('1.3'))])
You can also review the metadata associated with a file or the entire dataset, using the describe
function.
For example:
>>> intro_dataset.describe()
{'homepage': 'https://data.world/jonloyens/an-intro-to-dataworld-dataset',
'name': 'jonloyens_an-intro-to-dataworld-dataset',
'resources': [{'format': 'csv',
'name': 'changelog',
'path': 'data/ChangeLog.csv'},
{'format': 'csv',
'name': 'datadotworldbballstats',
'path': 'data/DataDotWorldBBallStats.csv'},
{'format': 'csv',
'name': 'datadotworldbballteam',
'path': 'data/DataDotWorldBBallTeam.csv'}]}
>>> intro_dataset.describe('datadotworldbballstats')
{'format': 'csv',
'name': 'datadotworldbballstats',
'path': 'data/DataDotWorldBBallStats.csv',
'schema': {'fields': [{'name': 'Name', 'title': 'Name', 'type': 'string'},
{'name': 'PointsPerGame',
'title': 'PointsPerGame',
'type': 'number'},
{'name': 'AssistsPerGame',
'title': 'AssistsPerGame',
'type': 'number'}]}}
The query()
function allows datasets to be queried live using SQL
or SPARQL
query languages.
To query a dataset, invoke the query()
function.
For example:
results = dw.query('jonloyens/an-intro-to-dataworld-dataset', 'SELECT * FROM DataDotWorldBBallStats')
Query result objects allow access to the data via raw_data
, table
and dataframe
properties, of type
json
, list
and pandas.DataFrame
, respectively.
For example:
>>> results.dataframe
Name PointsPerGame AssistsPerGame
0 Jon 20.4 1.3
1 Rob 15.5 8.0
2 Sharon 30.1 11.2
3 Alex 8.2 0.5
4 Rebecca 12.3 17.0
5 Ariane 18.1 3.0
6 Bryon 16.0 8.5
7 Matt 13.0 2.1
Tables are lists of rows, each represented by a mapping (dict) of column names to their respective values. For example:
>>> results.table[0]
OrderedDict([('Name', 'Jon'),
('PointsPerGame', Decimal('20.4')),
('AssistsPerGame', Decimal('1.3'))])
To query using SPARQL
invoke query()
using query_type='sparql'
, or else, it will assume
the query to be a SQL
query.
Just like in the dataset case, you can view the metadata associated with a query result using the describe()
function.
For example:
>>> results.describe()
{'fields': [{'name': 'Name', 'type': 'string'},
{'name': 'PointsPerGame', 'type': 'number'},
{'name': 'AssistsPerGame', 'type': 'number'}]}
The open_remote_file()
function allows you to write data to or read data from a file in a
data.world dataset.
The object that is returned from the open_remote_file()
call is similar to a file handle that
would be used to write to a local file - it has a write()
method, and contents sent to that
method will be written to the file remotely.
>>> import datadotworld as dw
>>>
>>> with dw.open_remote_file('username/test-dataset', 'test.txt') as w:
... w.write("this is a test.")
>>>
Of course, writing a text file isn't the primary use case for data.world - you want to write your
data! The return object from open_remote_file()
should be usable anywhere you could normally
use a local file handle in write mode - so you can use it to serialize the contents of a PANDAS
DataFrame
to a CSV file...
>>> import pandas as pd
>>> df = pd.DataFrame({'foo':[1,2,3,4],'bar':['a','b','c','d']})
>>> with dw.open_remote_file('username/test-dataset', 'dataframe.csv') as w:
... df.to_csv(w, index=False)
Or, to write a series of dict
objects as a JSON Lines file...
>>> import json
>>> with dw.open_remote_file('username/test-dataset', 'test.jsonl') as w:
... json.dump({'foo':42, 'bar':"A"}, w)
... json.dump({'foo':13, 'bar':"B"}, w)
>>>
Or to write a series of dict
objects as a CSV...
>>> import csv
>>> with dw.open_remote_file('username/test-dataset', 'test.csv') as w:
... csvw = csv.DictWriter(w, fieldnames=['foo', 'bar'])
... csvw.writeheader()
... csvw.writerow({'foo':42, 'bar':"A"})
... csvw.writerow({'foo':13, 'bar':"B"})
>>>
And finally, you can write binary data by streaming bytes
or bytearray
objects, if you open the
file in binary mode...
>>> with dw.open_remote_file('username/test-dataset', 'test.txt', mode='wb') as w:
... w.write(bytes([100,97,116,97,46,119,111,114,108,100]))
You can also read data from a file in a similar fashion
>>> with dw.open_remote_file('username/test-dataset', 'test.txt', mode='r') as r:
... print(r.read)
Reading from the file into common parsing libraries works naturally, too - when opened in 'r' mode, the file object acts as an Iterator of the lines in the file:
>>> with dw.open_remote_file('username/test-dataset', 'test.txt', mode='r') as r:
... csvr = csv.DictReader(r)
... for row in csvr:
... print(row['column a'], row['column b'])
Reading binary files works naturally, too - when opened in 'rb' mode, read()
returns the contents of
the file as a byte array, and the file object acts as an iterator of bytes:
>>> with dw.open_remote_file('username/test-dataset', 'test', mode='rb') as r:
... bytes = r.read()
For a complete list of available API operations, see official documentation.
Python wrappers are implemented by the ApiClient
class. To obtain an instance, simply call api_client()
.
For example:
client = dw.api_client()
The client currently implements the following functions:
create_dataset
update_dataset
replace_dataset
get_dataset
add_files_via_url
sync_files
upload_files
delete_files
You can find more about those functions using help(client)