Rust implementation of DIDComm v2 spec
#License
GoTo: full test
// Message construction
let m = Message::new()
// setting `from` header (sender) - Optional
.from("did:xyz:ulapcuhsatnpuhza930hpu34n_")
// setting `to` header (recepients) - Optional
.to(&["did::xyz:34r3cu403hnth03r49g03", "did:xyz:30489jnutnjqhiu0uh540u8hunoe"])
// populating body with some data - `Vec<bytes>`
.set_body(some_payload.as_bytes());
// Serialize message into JWM json (SENDER action)
let ready_to_send = m.as_raw_json().unwrap();
//... transport is happening here ...
// On receival deserialize from json into Message (RECEIVER action)
// Error handling recommended here
let received = Message::receive(&ready_to_send, None).unwrap();
GoTo: full test
// decide which [Algorithm](crypto::encryptor::CryptoAlgorithm) is used (based on key)
let alg = CryptoAlgorithm::XC20P;
// key as bytes
let ek = [130, 110, 93, 113, 105, 127, 4, 210, 65, 234, 112, 90, 150, 120, 189, 252, 212, 165, 30, 209, 194, 213, 81, 38, 250, 187, 216, 14, 246, 250, 166, 92]
// creating message
let mut message = Message::new()
// packing in some payload (can be anything really)
.set_body(br#"{'key':'value','key2':'value2'}"#)
// set JOSE header for XC20P algorithm
.as_jwe(alg)
// add some custom app/protocol related headers to didcomm header portion
// these are not included into JOSE header
.add_header_field("my_custom_key".into(), "my_custom_value".into())
.add_header_field("another_key".into(), "another_value".into());
// set `kid` property
message.jwm_header.kid =
Some(String::from(r#"Ef1sFuyOozYm3CEY4iCdwqxiSyXZ5Br-eUDdQXk6jaQ"#));
// encrypt and serialize message with JOSE header included
let ready_to_send = message.seal(ek.as_bytes())?;
// use transport of choice to send `ready_to_send` data to the receiver!
//... transport is happening here ...
- Here
Message
is signed but not encrypted. - In such scenarios explicit use of
.sign(...)
andMessage::verify(...)
required.
// Message construction an JWS wrapping
let message = Message::new() // creating message
.from("did:xyz:ulapcuhsatnpuhza930hpu34n_") // setting from
.to(&["did::xyz:34r3cu403hnth03r49g03", "did:xyz:30489jnutnjqhiu0uh540u8hunoe"]) // setting to
.set_body(sample_dids::TEST_DID_SIGN_1.as_bytes()) // packing in some payload
.as_jws(&SignatureAlgorithm::EdDsa)
.sign(SignatureAlgorithm::EdDsa.signer(), &sign_keypair.to_bytes()).unwrap();
//... transport is happening here ...
// Receiving JWS
let received = Message::verify(&message.unwrap().as_bytes(), &sign_keypair.public.to_bytes());
- Message should be encrypted by destination key first in
.routed_by()
method call using key for the recepient. - Next it should be encrypted by mediator key in
.seal()
method call - this can be done multiple times - once for each mediator in chain but should be strictly sequentual to match mediators sequence in the chain. - Method call
.seal()
MUST be preceeded by.as_jwe(CryptoAlgorithm)
as mediators may use different algorithms and key types than destination and this is not automatically predicted or populated. - Keys used for encryption should be used in reverse order - final destination - last mediator - second to last mediator - etc. Onion style.
GoTo: full test
// Message construction
let message = Message::new()
// setting from
.from("did:xyz:ulapcuhsatnpuhza930hpu34n_")
// setting to
.to(&["did:xyz:34r3cu403hnth03r49g03", "did:xyz:30489jnutnjqhiu0uh540u8hunoe"])
// packing in some payload
.set_body(some_payload.as_bytes())
// set JOSE header for XC20P algorithm
.as_jwe(CryptoAlgorithm::XC20P)
// custom header
.add_header_field("my_custom_key".into(), "my_custom_value".into())
// another coustom header
.add_header_field("another_key".into(), "another_value".into())
// set kid header
.kid(String::from(r#"Ef1sFuyOozYm3CEY4iCdwqxiSyXZ5Br-eUDdQXk6jaQ"#))
// here we use destination key to bob and `to` header of mediator -
//**THISH MUST BE LAST IN THE CHAIN** - after this call you'll get new instance of envelope `Message` destined to the mediator.
// `ek_to_bob` - destination targeted encryption key
.routed_by(ek_to_bob.as_bytes(), vec!("did:mediator:suetcpl23pt23rp2teu995t98u"));
// Message envelope to mediator
let ready_to_send = message
.unwrap() // **ERROR HANDLE** here is recommended
.as_jwe(CryptoAlgorithm::XC20P) // here this method call is crucial as mediator and end receiver may use different algorithms.
// `ek_to_mediator` - mediator targeted encryption key
.seal(ek_to_mediator.as_bytes()); // this would've failed without previous method call.
//... transport to mediator is happening here ...
// Received by mediator
// `rk_mediator` - key to decrypt mediated message
let received_mediated = Message::receive(&ready_to_send.unwrap(), Some(rk_mediator.as_bytes()));
//... transport to destination is happening here ...
// Received by Bob
// `rk_bob` - key to decrypt final message
let received_bob = Message::receive(&String::from_utf8_lossy(&received_mediated.unwrap().get_body()?.as_ref()), Some(rk_bob.as_bytes()));
- JWS header is set automatically based on signing algorythm type.
- Message forming and encryption happens in same way as in other JWE examples.
- ED25519-dalek signature is used in this example with keypair for signing and public key for verification.
GoTo: full test
// Message construction
let message = Message::new() // creating message
.from("did:xyz:ulapcuhsatnpuhza930hpu34n_") // setting from
.to(&["did::xyz:34r3cu403hnth03r49g03"]) // setting to
.set_body(sample_dids::TEST_DID_SIGN_1.as_bytes()) // packing in some payload
.as_jwe(CryptoAlgorithm::XC20P) // set JOSE header for XC20P algorithm
.add_header_field("my_custom_key".into(), "my_custom_value".into()) // custom header
.add_header_field("another_key".into(), "another_value".into()) // another coustom header
.kid(String::from(r#"Ef1sFuyOozYm3CEY4iCdwqxiSyXZ5Br-eUDdQXk6jaQ"#)); // set kid header
// Send as signed and encrypted JWS wrapped into JWE
let ready_to_send = message.seal_signed(
encryption_key.as_bytes(),
&sign_keypair.to_bytes(),
SignatureAlgorithm::EdDsa)
.unwrap();
//... transport to destination is happening here ...
//Receive - same method to receive for JWE or JWS wrapped into JWE but with pub verifying key
let received = Message::receive(
&ready_to_send,
Some(decryption_key.as_bytes()),
Some(&pub_sign_verify_key.to_bytes())); // and now we parse received
- ! Works with
resolve
feature only - requires resolution of public keys for each recepient for shared secret generation. - Static key generated randomly in the background (
to
field has >1 recepient).
GoTo: full test
// Creating message with multiple recepients.
let m = Message::new()
.from("did:key:z6MkiTBz1ymuepAQ4HEHYSF1H8quG5GLVVQR3djdX3mDooWp")
.to(&["did:key:z6MkjchhfUsD6mmvni8mCdXHw216Xrm9bQe2mBH1P5RDjVJG", "did:key:z6MknGc3ocHs3zdPiJbnaaqDi58NGb4pk1Sp9WxWufuXSdxf"])
.as_jwe(&CryptoAlgorithm::XC20P);
let jwe = m.seal(&sender_private);
// Packing was ok?
assert!(jwe.is_ok());
let jwe = jwe.unwrap();
// Each of the recepients receive it in same way as before (direct with single receiver)
let received_first = Message::receive(&jwe, &first_private);
let received_second = Message::receive(&jwe, &second_private);
// All good without any extra inputs
assert!(received_first.is_ok());
assert!(received_second.is_ok());
use didcomm_rs::{Message, AttachmentBuilder, AttachmentDataBuilder};
let payload = b"some usefull data";
let mut m = Message:new();
m.append_attachment(
AttachmentBuilder::new(true)
.with_id("best attachment")
.with_data(
AttachmentDataBuilder::new()
.with_raw_payload(payload)
)
);
or
use didcomm_rs::{Message, AttachmentBuilder, AttachmentDataBuilder};
let attachments: Vec<AttachmentBuilder>; // instantiate properly
let mut m = Message:new();
for attachment in attachments {
m.append_attachment(attachment);
}
// `m` is `receive()`'d instance of a `Message`
let something_im_looking_for = m.get_attachments().filter(|single| single.id == "id I'm looking for");
assert!(something_im_looking_for.next().is_some());
for found in something_im_looking_for {
// process attachments
}
By default all new messages are created with random UUID as thid
header value and with empty pthid
value.
To reply to a message in thread with both thid
and pthid
copied use reply_to
method:
let m = Message::new()
.reply_to(&received)
// - other methods to form a message
;
To set parent thread id (or pthid
header), use with_parent
method:
let m = Message::new()
.with_parent(&receievd)
// - other methods to form a message
;
In order to satisfy any other header values universal method is present: Message::add_header_field' This method is backed up by a
HashMap` of <String, String>. If the key was present - it's value will be updated.
let m = Message::new()
.add_header_field("key", "value")
.add_header_field("~decorator", "value")
// - other methods to form a message
;
To find if specific application level header is present and get it's value get_application_params
method should be used.
let m: Message; // proprely instantiated received message
if let Some((my_key, my_value)) = m.get_application_params().filter(|(key, _)| key == "my_key").first();
In order to use your own implementation[s] of message crypto and/or signature algorythms implement these trait[s]:
Dont use default
feature - might change in future.
When implemented - use them instead of CrptoAlgorithm
and SignatureAlgorithm
from examples above.
GoTo: full test
In most cases apllication implementation would prefer to have strongly typed body of the message instead of raw Vec<u8>
.
For this scenario Shape
trait should be implemented for target type.
- First, let's define our target type. JSON in this example.
#[derive(Serialize, Deserialize, PartialEq, Debug)]
struct DesiredShape {
num_field: usize,
string_field: String,
}
- Next, implement
Shape
trait for it
impl Shape for DesiredShape {
type Err = Error;
fn shape(m: &Message) -> Result<DesiredShape, Error> {
serde_json::from_slice(&m.body)
.map_err(|e| Error::SerdeError(e))
}
}
- Now we can call
shape()
on ourMessage
and shape in in. - In this example we expect JSON payload and use it's Deserializer to get our data, but your implementation can work with any serialization.
let received_typed_body = DesiredShape::shape(&m).unwrap(); // Where m = Message
This is a sample implementation of the DIDComm V2 spec. The DIDComm V2 spec is still actively being developed by the DIDComm WG in the DIF and therefore subject to change.