Python package with a class that allows pipeline-like specification and execution of regression workflows.
Extensive guide is given in the Jupyter notebook "Rapid-specification-of-regression-workflows.ipynb" and the corresponding Markdown document "Rapid-specification-of-regression-workflows.md".
-
The class
Regressionizer
facilitates rapid specifications of regressions workflows.- To quickly specify:
- data rescaling and summary
- regression computations
- outliers finding
- conditional Cumulative Distribution Functions (CDFs) reconstruction
- plotting of data, fits, residual errors, outliers, CDFs
- To quickly specify:
-
Regressionizer
works with data frames, numpy arrays, lists of numbers, and lists of numeric pairs.
-
The curves computed with Quantile Regression are called regression quantiles.
-
Regressionizer
has three regression methods:quantile_regression
quantile_regression_fit
least_squares_fit
-
The regression quantiles computed with the methods
quantile_regression
andquantile_regression_fit
correspond to probabilities specified with the argumentprobs
. -
The method
quantile_regression
computes fits using a B-spline functions basis.- The basis is specified with the arguments
knots
andorder
. order
is 3 by default.
- The basis is specified with the arguments
-
The methods
quantile_regession_fit
andleast_squares_fit
use lists of basis functions to fit with specified with the argumentfuncs
.
The following flowchart summarizes the workflows that are supported by Regressionizer
:
Import libraries:
from Regressionizer import *
import numpy as np
Generate random data:
np.random.seed(0)
x = np.linspace(0, 2, 300)
y = np.sin(2 * np.pi * x) + np.random.normal(0, 0.4, x.shape)
data = np.column_stack((x, y)
Compute quantile regression for probabilities [0.2, 0.5, 0.8]
and make the corresponding plot:
obj = (Regressionizer(data)
.quantile_regression(knots=8, probs=[0.2, 0.5, 0.8])
.plot(title="B-splines fit", template="plotly")
)
Show the plot obtained above:
obj.take_value().show()
[RK1] Roger Koenker, Quantile Regression, Cambridge University Press, 2005.
[RK2] Roger Koenker, "Quantile Regression in R: a vignette", (2006), CRAN.
[AA1] Anton Antonov, "A monad for Quantile Regression workflows", (2018), MathematicaForPrediction at GitHub.
[RKp1] Roger Koenker,
quantreg
,
CRAN.
[AAp1] Anton Antonov, Quantile Regression WL paclet, (2014-2023), GitHub/antononcube.
[AAp2] Anton Antonov, Monadic Quantile Regression WL paclet, (2018-2024), GitHub/antononcube.
[AAp3] Anton Antonov,
QuantileRegression
,
(2019),
Wolfram Function Repository.
[AAr1] Anton Antonov, DSL::English::QuantileRegressionWorkflows in Raku, (2020), GitHub/antononcube.
[AAv1] Anton Antonov, "Boston useR! QuantileRegression Workflows 2019-04-18", (2019), Anton Antonov at YouTube.
[AAv2] Anton Antonov, "useR! 2020: How to simplify Machine Learning workflows specifications", (2020), R Consortium at YouTube.