Skip to content

LRBinner is a long-read binning tool published in WABI 2021 proceedings and AMB.

License

Notifications You must be signed in to change notification settings

anuradhawick/LRBinner

Repository files navigation

LRBinner: Binning Error-Prone Long Reads Using Auto Encoders

GitHub GitHub code size in bytes

Docker pathway

Dockerfile is now available. (If you're familiar deploying a docker file, No Image pushed yet)

Dependencies

LRBinner is coded purely using C++ (v9+) and Python 3.10. To run LRBinner, you will need to install the following python and C++ modules.

A possible conda/mamba environment to work (credits Calum Walsh)

conda create -n lrbinner -y python=3.10 numpy scipy seaborn h5py hdbscan gcc openmp tqdm biopython fraggenescan hmmer tabulate pytorch pytorch-cuda=11.7 -c pytorch -c nvidia -c bioconda

Python dependencies

Essential libraries

  • numpy 1.16.4
  • scipy 1.3.0
  • seaborn 0.9.0
  • h5py 2.9.0
  • tabulate 0.8.7
  • pytorch 1.4.0

Essential for contig binning

  • fraggenescan 1.31
  • hmmer 3.3.2
  • HDBSCAN

C++ requirements

  • GCC version 9.1.0 or later
  • OpenMP 4.5 for multi processing

Downloading LRBinner

To download LRBinner, you have to clone the LRBinner repository to your machine.

git clone https://github.com/anuradhawick/LRBinner.git

Compiling the source code

  • Build the binaries
cd LRBinner
python setup.py build

OR

sh build.sh

Test run data

For long reads binning coverage of this dataset may be too low for assembly)

Extract Sim-8 data from here;

python LRBinner reads -r reads.fasta -bc 10 -bs 32 -o lrb --resume --cuda -mbs 5000 --ae-dims 4 --ae-epochs 200 -bit 0 -t 32

Test run results

Note that the results could vary due to slight sampling differences. Evaluations can be done using the eval.py script.

_                                                           Bin-0_(4)  Bin-1_(1)  Bin-2_(3)  Bin-3_(0)  Bin-4_(5)  Bin-5_(2)  Bin-6_(6)  Bin-7_(7)
CP002618.1_Lactobacillus_paracasei_strain_BD-II             744        973        92         70169      215        0          0          0
NC_011658.1_Bacillus_cereus_AH187                           110        11         277        10         30129      0          1          439
CP002807.1_Chlamydia_psittaci_08DC60_chromosome             0          0          9          0          1          0          0          11014
NC_012883.1_Thermococcus_sibiricus_MM_739                   74         0          32441      1          28         2          0          8
NC_011415.1_Escherichia_coli_SE11,_complete_sequence        70474      432        47         220        616        3          0          43
NC_013929.1_Streptomyces_scabiei_87.22_complete_genome      343        0          0          0          0          118979     8          0
FQ312002.1_Haemophilus_parainfluenzae_T3T1_complete_genome  394        83623      32         191        1596       0          0          46
AP011170.1_Acetobacter_pasteurianus_IFO_3283-12_DNA         991        40         15         83         14         0          7382       13

Precision	     98.12
Recall    	     98.12
F1-Score  	     98.12
Bins      	         8

Usage

Parameters

Our manuscript presents results with -k 3 i.e. using 3-mers. Use -k 4 for tetramer based binning. Internal parameters are not yet set for -k 5 choice. We are working on that. 😄

Available LRBinner Commands

Use the -h argument to list all the available commands.

cd LRBinner
./lrbinner.py -h

Help

usage: lrbinner.py [-h] [--version] {reads,contigs} ...

LRBinner Help. A tool developed for binning of metagenomics long reads
(PacBio/ONT) and long read assemblies. Tool utilizes composition and coverage
profiles of reads based on k-mer frequencies to perform dimension reduction
via a deep variational auto-encoder. Dimension reduced reads are then
clustered. Minimum RAM requirement is 9GB (4GB GPU if cuda used).

optional arguments:
  -h, --help       show this help message and exit
  --version, -v    Show version.

LRBinner running Mode:
  {reads,contigs}
    reads          for binning reads
    contigs        for binning contigs

Reads binning help

usage: lrbinner.py reads [-h] --reads-path READS_PATH [--k-size {3,4,5}]
                      [--bin-size BIN_SIZE] [--bin-count BIN_COUNT]
                      [--ae-epochs AE_EPOCHS] [--ae-dims AE_DIMS]
                      [--ae-hidden AE_HIDDEN] [--threads THREADS] [--separate]
                      [--cuda] [--resume] --output <DEST> [--version]
                      [--min-bin-size MIN_BIN_SIZE]
                      [--bin-iterations BIN_ITERATIONS]

optional arguments:
  -h, --help            show this help message and exit
  --reads-path READS_PATH, -r READS_PATH
                        Reads path for binning
  --k-size {3,4,5}, -k {3,4,5}
                        k value for k-mer frequency vector. Choose between 3
                        and 5.
  --bin-size BIN_SIZE, -bs BIN_SIZE
                        Bin size for the coverage histogram.
  --bin-count BIN_COUNT, -bc BIN_COUNT
                        Number of bins for the coverage histogram.
  --ae-epochs AE_EPOCHS
                        Epochs for the auto_encoder.
  --ae-dims AE_DIMS     Size of the latent dimension.
  --ae-hidden AE_HIDDEN
                        Hidden layer sizes eg: 128,128
  --threads THREADS, -t THREADS
                        Thread count for computations
  --separate, -sep      Flag to separate reads/contigs into bins detected.
                        Avaialbe in folder named 'binned'.
  --cuda                Whether to use CUDA if available.
  --resume              Continue from the last step or the binning step (which
                        ever comes first). Can save time needed count k-mers.
  --output <DEST>, -o <DEST>
                        Output directory
  --version, -v         Show version.
  --min-bin-size MIN_BIN_SIZE, -mbs MIN_BIN_SIZE
                        The minimum number of reads a bin should have.
  --bin-iterations BIN_ITERATIONS, -bit BIN_ITERATIONS
                        Number of iterations for cluster search. Use 0 for
                        exhaustive search.

Contigs binning help

usage: lrbinner.py contigs [-h] --reads-path READS_PATH [--k-size {3,4,5}]
                        [--bin-size BIN_SIZE] [--bin-count BIN_COUNT]
                        [--ae-epochs AE_EPOCHS] [--ae-dims AE_DIMS]
                        [--ae-hidden AE_HIDDEN] [--threads THREADS]
                        [--separate] [--cuda] [--resume] --output <DEST>
                        [--version] --contigs CONTIGS

optional arguments:
  -h, --help            show this help message and exit
  --reads-path READS_PATH, -r READS_PATH
                        Reads path for binning
  --k-size {3,4,5}, -k {3,4,5}
                        k value for k-mer frequency vector. Choose between 3
                        and 5.
  --bin-size BIN_SIZE, -bs BIN_SIZE
                        Bin size for the coverage histogram.
  --bin-count BIN_COUNT, -bc BIN_COUNT
                        Number of bins for the coverage histogram.
  --ae-epochs AE_EPOCHS
                        Epochs for the auto_encoder.
  --ae-dims AE_DIMS     Size of the latent dimension.
  --ae-hidden AE_HIDDEN
                        Hidden layer sizes eg: 128,128
  --threads THREADS, -t THREADS
                        Thread count for computations
  --separate, -sep      Flag to separate reads/contigs into bins detected.
                        Avaialbe in folder named 'binned'.
  --cuda                Whether to use CUDA if available.
  --resume              Continue from the last step or the binning step (which
                        ever comes first). Can save time needed count k-mers.
  --output <DEST>, -o <DEST>
                        Output directory
  --version, -v         Show version.
  --contigs CONTIGS, -c CONTIGS
                        Contigs path

Citation

If you use LRBinner please cite using the following bibtex entries.

@InProceedings{wickramarachchi_et_al:LIPIcs.WABI.2021.11,
  author =	{Wickramarachchi, Anuradha and Lin, Yu},
  title =	{{LRBinner: Binning Long Reads in Metagenomics Datasets}},
  booktitle =	{21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
  pages =	{11:1--11:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-200-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{201},
  editor =	{Carbone, Alessandra and El-Kebir, Mohammed},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/14364},
  URN =		{urn:nbn:de:0030-drops-143644},
  doi =		{10.4230/LIPIcs.WABI.2021.11},
  annote =	{Keywords: Metagenomics binning, long reads, machine learning, clustering}
}
@Article{Wickramarachchi2022,
  author={Wickramarachchi, Anuradha and Lin, Yu},
  title={Binning long reads in metagenomics datasets using composition and coverage information},
  journal={Algorithms for Molecular Biology},
  year={2022},
  month={Jul},
  day={11},
  volume={17},
  number={1},
  pages={14},
  issn={1748-7188},
  doi={10.1186/s13015-022-00221-z},
  url={https://doi.org/10.1186/s13015-022-00221-z}
}

Get in touch and connect at anuradhawick.com or email [email protected]