-
Notifications
You must be signed in to change notification settings - Fork 847
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add parquet
StatisticsConverter
for arrow reader (#6046)
* Adds arrow statistics converter for parquet stastistics. * Adds integration tests for arrow statsistics converter. * Fix linting, remove todo, re-use arrow code. * Remove commented out debug::log statements. * Move parquet_column to lib.rs * doc tweaks * Add benchmark * Add parquet_column_index and arrow_field accessors + test * Copy edit docs obsessively * clippy --------- Co-authored-by: Eric Fredine <[email protected]> Co-authored-by: Andrew Lamb <[email protected]>
- Loading branch information
1 parent
6d4e2f2
commit 66390ff
Showing
7 changed files
with
5,989 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! Benchmarks of benchmark for extracting arrow statistics from parquet | ||
use arrow::array::{ArrayRef, DictionaryArray, Float64Array, StringArray, UInt64Array}; | ||
use arrow_array::{Int32Array, Int64Array, RecordBatch}; | ||
use arrow_schema::{ | ||
DataType::{self, *}, | ||
Field, Schema, | ||
}; | ||
use criterion::{criterion_group, criterion_main, BenchmarkId, Criterion}; | ||
use parquet::{arrow::arrow_reader::ArrowReaderOptions, file::properties::WriterProperties}; | ||
use parquet::{ | ||
arrow::{arrow_reader::ArrowReaderBuilder, ArrowWriter}, | ||
file::properties::EnabledStatistics, | ||
}; | ||
use std::sync::Arc; | ||
use tempfile::NamedTempFile; | ||
#[derive(Debug, Clone)] | ||
enum TestTypes { | ||
UInt64, | ||
Int64, | ||
F64, | ||
String, | ||
Dictionary, | ||
} | ||
|
||
use parquet::arrow::arrow_reader::statistics::StatisticsConverter; | ||
use std::fmt; | ||
|
||
impl fmt::Display for TestTypes { | ||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { | ||
match self { | ||
TestTypes::UInt64 => write!(f, "UInt64"), | ||
TestTypes::Int64 => write!(f, "Int64"), | ||
TestTypes::F64 => write!(f, "F64"), | ||
TestTypes::String => write!(f, "String"), | ||
TestTypes::Dictionary => write!(f, "Dictionary(Int32, String)"), | ||
} | ||
} | ||
} | ||
|
||
fn create_parquet_file( | ||
dtype: TestTypes, | ||
row_groups: usize, | ||
data_page_row_count_limit: &Option<usize>, | ||
) -> NamedTempFile { | ||
let schema = match dtype { | ||
TestTypes::UInt64 => Arc::new(Schema::new(vec![Field::new("col", DataType::UInt64, true)])), | ||
TestTypes::Int64 => Arc::new(Schema::new(vec![Field::new("col", DataType::Int64, true)])), | ||
TestTypes::F64 => Arc::new(Schema::new(vec![Field::new( | ||
"col", | ||
DataType::Float64, | ||
true, | ||
)])), | ||
TestTypes::String => Arc::new(Schema::new(vec![Field::new("col", DataType::Utf8, true)])), | ||
TestTypes::Dictionary => Arc::new(Schema::new(vec![Field::new( | ||
"col", | ||
DataType::Dictionary(Box::new(Int32), Box::new(Utf8)), | ||
true, | ||
)])), | ||
}; | ||
|
||
let mut props = WriterProperties::builder().set_max_row_group_size(row_groups); | ||
if let Some(limit) = data_page_row_count_limit { | ||
props = props | ||
.set_data_page_row_count_limit(*limit) | ||
.set_statistics_enabled(EnabledStatistics::Page); | ||
}; | ||
let props = props.build(); | ||
|
||
let file = tempfile::Builder::new() | ||
.suffix(".parquet") | ||
.tempfile() | ||
.unwrap(); | ||
let mut writer = | ||
ArrowWriter::try_new(file.reopen().unwrap(), schema.clone(), Some(props)).unwrap(); | ||
|
||
for _ in 0..row_groups { | ||
let batch = match dtype { | ||
TestTypes::UInt64 => make_uint64_batch(), | ||
TestTypes::Int64 => make_int64_batch(), | ||
TestTypes::F64 => make_f64_batch(), | ||
TestTypes::String => make_string_batch(), | ||
TestTypes::Dictionary => make_dict_batch(), | ||
}; | ||
if data_page_row_count_limit.is_some() { | ||
// Send batches one at a time. This allows the | ||
// writer to apply the page limit, that is only | ||
// checked on RecordBatch boundaries. | ||
for i in 0..batch.num_rows() { | ||
writer.write(&batch.slice(i, 1)).unwrap(); | ||
} | ||
} else { | ||
writer.write(&batch).unwrap(); | ||
} | ||
} | ||
writer.close().unwrap(); | ||
file | ||
} | ||
|
||
fn make_uint64_batch() -> RecordBatch { | ||
let array: ArrayRef = Arc::new(UInt64Array::from(vec![ | ||
Some(1), | ||
Some(2), | ||
Some(3), | ||
Some(4), | ||
Some(5), | ||
])); | ||
RecordBatch::try_new( | ||
Arc::new(arrow::datatypes::Schema::new(vec![ | ||
arrow::datatypes::Field::new("col", UInt64, false), | ||
])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn make_int64_batch() -> RecordBatch { | ||
let array: ArrayRef = Arc::new(Int64Array::from(vec![ | ||
Some(1), | ||
Some(2), | ||
Some(3), | ||
Some(4), | ||
Some(5), | ||
])); | ||
RecordBatch::try_new( | ||
Arc::new(arrow::datatypes::Schema::new(vec![ | ||
arrow::datatypes::Field::new("col", Int64, false), | ||
])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn make_f64_batch() -> RecordBatch { | ||
let array: ArrayRef = Arc::new(Float64Array::from(vec![1.0, 2.0, 3.0, 4.0, 5.0])); | ||
RecordBatch::try_new( | ||
Arc::new(arrow::datatypes::Schema::new(vec![ | ||
arrow::datatypes::Field::new("col", Float64, false), | ||
])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn make_string_batch() -> RecordBatch { | ||
let array: ArrayRef = Arc::new(StringArray::from(vec!["a", "b", "c", "d", "e"])); | ||
RecordBatch::try_new( | ||
Arc::new(arrow::datatypes::Schema::new(vec![ | ||
arrow::datatypes::Field::new("col", Utf8, false), | ||
])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn make_dict_batch() -> RecordBatch { | ||
let keys = Int32Array::from(vec![0, 1, 2, 3, 4]); | ||
let values = StringArray::from(vec!["a", "b", "c", "d", "e"]); | ||
let array: ArrayRef = Arc::new(DictionaryArray::try_new(keys, Arc::new(values)).unwrap()); | ||
RecordBatch::try_new( | ||
Arc::new(Schema::new(vec![Field::new( | ||
"col", | ||
Dictionary(Box::new(Int32), Box::new(Utf8)), | ||
false, | ||
)])), | ||
vec![array], | ||
) | ||
.unwrap() | ||
} | ||
|
||
fn criterion_benchmark(c: &mut Criterion) { | ||
let row_groups = 100; | ||
use TestTypes::*; | ||
let types = vec![Int64, UInt64, F64, String, Dictionary]; | ||
let data_page_row_count_limits = vec![None, Some(1)]; | ||
|
||
for dtype in types { | ||
for data_page_row_count_limit in &data_page_row_count_limits { | ||
let file = create_parquet_file(dtype.clone(), row_groups, data_page_row_count_limit); | ||
let file = file.reopen().unwrap(); | ||
let options = ArrowReaderOptions::new().with_page_index(true); | ||
let reader = ArrowReaderBuilder::try_new_with_options(file, options).unwrap(); | ||
let metadata = reader.metadata(); | ||
let row_groups = metadata.row_groups(); | ||
let row_group_indices: Vec<_> = (0..row_groups.len()).collect(); | ||
|
||
let statistic_type = if data_page_row_count_limit.is_some() { | ||
"data page" | ||
} else { | ||
"row group" | ||
}; | ||
|
||
let mut group = c.benchmark_group(format!( | ||
"Extract {} statistics for {}", | ||
statistic_type, | ||
dtype.clone() | ||
)); | ||
group.bench_function(BenchmarkId::new("extract_statistics", dtype.clone()), |b| { | ||
b.iter(|| { | ||
let converter = StatisticsConverter::try_new( | ||
"col", | ||
reader.schema(), | ||
reader.parquet_schema(), | ||
) | ||
.unwrap(); | ||
|
||
if data_page_row_count_limit.is_some() { | ||
let column_page_index = reader | ||
.metadata() | ||
.column_index() | ||
.expect("File should have column page indices"); | ||
|
||
let column_offset_index = reader | ||
.metadata() | ||
.offset_index() | ||
.expect("File should have column offset indices"); | ||
|
||
let _ = converter.data_page_mins( | ||
column_page_index, | ||
column_offset_index, | ||
&row_group_indices, | ||
); | ||
let _ = converter.data_page_maxes( | ||
column_page_index, | ||
column_offset_index, | ||
&row_group_indices, | ||
); | ||
let _ = converter.data_page_null_counts( | ||
column_page_index, | ||
column_offset_index, | ||
&row_group_indices, | ||
); | ||
let _ = converter.data_page_row_counts( | ||
column_offset_index, | ||
row_groups, | ||
&row_group_indices, | ||
); | ||
} else { | ||
let _ = converter.row_group_mins(row_groups.iter()).unwrap(); | ||
let _ = converter.row_group_maxes(row_groups.iter()).unwrap(); | ||
let _ = converter.row_group_null_counts(row_groups.iter()).unwrap(); | ||
let _ = converter.row_group_row_counts(row_groups.iter()).unwrap(); | ||
} | ||
}) | ||
}); | ||
group.finish(); | ||
} | ||
} | ||
} | ||
|
||
criterion_group!(benches, criterion_benchmark); | ||
criterion_main!(benches); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.