Skip to content

Minor: Add unit tests for ceil/floor functions #1728

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 163 additions & 0 deletions native/spark-expr/src/math_funcs/ceil.rs
Original file line number Diff line number Diff line change
Expand Up @@ -81,3 +81,166 @@ fn decimal_ceil_f(scale: &i8) -> impl Fn(i128) -> i128 {
let div = 10_i128.pow_wrapping(*scale as u32);
move |x: i128| div_ceil(x, div)
}

#[cfg(test)]
mod test {
use crate::spark_ceil;
use arrow::array::{Decimal128Array, Float32Array, Float64Array, Int64Array};
use arrow::datatypes::DataType;
use datafusion::common::cast::as_int64_array;
use datafusion::common::{Result, ScalarValue};
use datafusion::physical_plan::ColumnarValue;
use std::sync::Arc;

#[test]
fn test_ceil_f32_array() -> Result<()> {
let input = Float32Array::from(vec![
Some(125.2345),
Some(15.0001),
Some(0.1),
Some(-0.9),
Some(-1.1),
Some(123.0),
None,
]);
let args = vec![ColumnarValue::Array(Arc::new(input))];
let ColumnarValue::Array(result) = spark_ceil(&args, &DataType::Float32)? else {
unreachable!()
};
let actual = as_int64_array(&result)?;
let expected = Int64Array::from(vec![
Some(126),
Some(16),
Some(1),
Some(0),
Some(-1),
Some(123),
None,
]);
assert_eq!(actual, &expected);
Ok(())
}

#[test]
fn test_ceil_f64_array() -> Result<()> {
let input = Float64Array::from(vec![
Some(125.2345),
Some(15.0001),
Some(0.1),
Some(-0.9),
Some(-1.1),
Some(123.0),
None,
]);
let args = vec![ColumnarValue::Array(Arc::new(input))];
let ColumnarValue::Array(result) = spark_ceil(&args, &DataType::Float64)? else {
unreachable!()
};
let actual = as_int64_array(&result)?;
let expected = Int64Array::from(vec![
Some(126),
Some(16),
Some(1),
Some(0),
Some(-1),
Some(123),
None,
]);
assert_eq!(actual, &expected);
Ok(())
}

#[test]
fn test_ceil_i64_array() -> Result<()> {
let input = Int64Array::from(vec![Some(-1), Some(0), Some(1), None]);
let args = vec![ColumnarValue::Array(Arc::new(input))];
let ColumnarValue::Array(result) = spark_ceil(&args, &DataType::Int64)? else {
unreachable!()
};
let actual = as_int64_array(&result)?;
let expected = Int64Array::from(vec![Some(-1), Some(0), Some(1), None]);
assert_eq!(actual, &expected);
Ok(())
}

// https://github.com/apache/datafusion-comet/issues/1729
#[test]
#[ignore]
fn test_ceil_decimal128_array() -> Result<()> {
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This test (and other tests for Decimal128 datatype) is not pass. It seems like a bug 🤔

let array = Decimal128Array::from(vec![
Some(12345), // 123.45
Some(12500), // 125.00
Some(-12999), // -129.99
None,
])
.with_precision_and_scale(5, 2)?;
let args = vec![ColumnarValue::Array(Arc::new(array))];
let ColumnarValue::Array(result) = spark_ceil(&args, &DataType::Decimal128(5, 2))? else {
unreachable!()
};
let expected = Decimal128Array::from(vec![
Some(12400), // 124.00
Some(12500), // 125.00
Some(-12900), // -129.00
None,
])
.with_precision_and_scale(5, 2)?;
let actual = result.as_any().downcast_ref::<Decimal128Array>().unwrap();
assert_eq!(actual, &expected);
Ok(())
}

#[test]
fn test_ceil_f32_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Float32(Some(125.2345)))];
let ColumnarValue::Scalar(ScalarValue::Int64(Some(result))) =
spark_ceil(&args, &DataType::Float32)?
else {
unreachable!()
};
assert_eq!(result, 126);
Ok(())
}

#[test]
fn test_ceil_f64_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Float64(Some(-1.1)))];
let ColumnarValue::Scalar(ScalarValue::Int64(Some(result))) =
spark_ceil(&args, &DataType::Float64)?
else {
unreachable!()
};
assert_eq!(result, -1);
Ok(())
}

#[test]
fn test_ceil_i64_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Int64(Some(48)))];
let ColumnarValue::Scalar(ScalarValue::Int64(Some(result))) =
spark_ceil(&args, &DataType::Int64)?
else {
unreachable!()
};
assert_eq!(result, 48);
Ok(())
}

// https://github.com/apache/datafusion-comet/issues/1729
#[test]
#[ignore]
fn test_ceil_decimal128_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Decimal128(
Some(567),
3,
1,
))]; // 56.7
let ColumnarValue::Scalar(ScalarValue::Decimal128(Some(result), 3, 1)) =
spark_ceil(&args, &DataType::Decimal128(3, 1))?
else {
unreachable!()
};
assert_eq!(result, 570); // 57.0
Ok(())
}
}
163 changes: 163 additions & 0 deletions native/spark-expr/src/math_funcs/floor.rs
Original file line number Diff line number Diff line change
Expand Up @@ -81,3 +81,166 @@ fn decimal_floor_f(scale: &i8) -> impl Fn(i128) -> i128 {
let div = 10_i128.pow_wrapping(*scale as u32);
move |x: i128| div_floor(x, div)
}

#[cfg(test)]
mod test {
use crate::spark_floor;
use arrow::array::{Decimal128Array, Float32Array, Float64Array, Int64Array};
use arrow::datatypes::DataType;
use datafusion::common::cast::as_int64_array;
use datafusion::common::{Result, ScalarValue};
use datafusion::physical_plan::ColumnarValue;
use std::sync::Arc;

#[test]
fn test_floor_f32_array() -> Result<()> {
let input = Float32Array::from(vec![
Some(125.9345),
Some(15.9999),
Some(0.9),
Some(-0.1),
Some(-1.999),
Some(123.0),
None,
]);
let args = vec![ColumnarValue::Array(Arc::new(input))];
let ColumnarValue::Array(result) = spark_floor(&args, &DataType::Float32)? else {
unreachable!()
};
let actual = as_int64_array(&result)?;
let expected = Int64Array::from(vec![
Some(125),
Some(15),
Some(0),
Some(-1),
Some(-2),
Some(123),
None,
]);
assert_eq!(actual, &expected);
Ok(())
}

#[test]
fn test_floor_f64_array() -> Result<()> {
let input = Float64Array::from(vec![
Some(125.9345),
Some(15.9999),
Some(0.9),
Some(-0.1),
Some(-1.999),
Some(123.0),
None,
]);
let args = vec![ColumnarValue::Array(Arc::new(input))];
let ColumnarValue::Array(result) = spark_floor(&args, &DataType::Float64)? else {
unreachable!()
};
let actual = as_int64_array(&result)?;
let expected = Int64Array::from(vec![
Some(125),
Some(15),
Some(0),
Some(-1),
Some(-2),
Some(123),
None,
]);
assert_eq!(actual, &expected);
Ok(())
}

#[test]
fn test_floor_i64_array() -> Result<()> {
let input = Int64Array::from(vec![Some(-1), Some(0), Some(1), None]);
let args = vec![ColumnarValue::Array(Arc::new(input))];
let ColumnarValue::Array(result) = spark_floor(&args, &DataType::Int64)? else {
unreachable!()
};
let actual = as_int64_array(&result)?;
let expected = Int64Array::from(vec![Some(-1), Some(0), Some(1), None]);
assert_eq!(actual, &expected);
Ok(())
}

// https://github.com/apache/datafusion-comet/issues/1729
#[test]
#[ignore]
fn test_floor_decimal128_array() -> Result<()> {
let array = Decimal128Array::from(vec![
Some(12345), // 123.45
Some(12500), // 125.00
Some(-12999), // -129.99
None,
])
.with_precision_and_scale(5, 2)?;
let args = vec![ColumnarValue::Array(Arc::new(array))];
let ColumnarValue::Array(result) = spark_floor(&args, &DataType::Decimal128(5, 2))? else {
unreachable!()
};
let expected = Decimal128Array::from(vec![
Some(12300), // 123.00
Some(12500), // 125.00
Some(-13000), // -130.00
None,
])
.with_precision_and_scale(5, 2)?;
let actual = result.as_any().downcast_ref::<Decimal128Array>().unwrap();
assert_eq!(actual, &expected);
Ok(())
}

#[test]
fn test_floor_f32_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Float32(Some(125.9345)))];
let ColumnarValue::Scalar(ScalarValue::Int64(Some(result))) =
spark_floor(&args, &DataType::Float32)?
else {
unreachable!()
};
assert_eq!(result, 125);
Ok(())
}

#[test]
fn test_floor_f64_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Float64(Some(-1.999)))];
let ColumnarValue::Scalar(ScalarValue::Int64(Some(result))) =
spark_floor(&args, &DataType::Float64)?
else {
unreachable!()
};
assert_eq!(result, -2);
Ok(())
}

#[test]
fn test_floor_i64_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Int64(Some(48)))];
let ColumnarValue::Scalar(ScalarValue::Int64(Some(result))) =
spark_floor(&args, &DataType::Int64)?
else {
unreachable!()
};
assert_eq!(result, 48);
Ok(())
}

// https://github.com/apache/datafusion-comet/issues/1729
#[test]
#[ignore]
fn test_floor_decimal128_scalar() -> Result<()> {
let args = vec![ColumnarValue::Scalar(ScalarValue::Decimal128(
Some(567),
3,
1,
))]; // 56.7
let ColumnarValue::Scalar(ScalarValue::Decimal128(Some(result), 3, 1)) =
spark_floor(&args, &DataType::Decimal128(3, 1))?
else {
unreachable!()
};
assert_eq!(result, 560); // 56.0
Ok(())
}
}
Loading