Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[FLINK-12173][table] Optimize SELECT DISTINCT #25752

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -416,7 +416,9 @@ object FlinkStreamRuleSets {
// Avoid async calls which call async calls.
AsyncCalcSplitRule.NESTED_SPLIT,
// Avoid having async calls in multiple projections in a single calc.
AsyncCalcSplitRule.ONE_PER_CALC_SPLIT
AsyncCalcSplitRule.ONE_PER_CALC_SPLIT,
// Optimize SELECT DISTINCT to use FlinkLogicalRank
StreamLogicalOptimizeSelectDistinctRule.INSTANCE
)

/** RuleSet to do physical optimize for stream */
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.flink.table.planner.plan.rules.physical.stream
import org.apache.flink.table.planner.JList
import org.apache.flink.table.planner.calcite.FlinkTypeFactory
import org.apache.flink.table.planner.calcite.FlinkTypeFactory.{isRowtimeIndicatorType, isTimeIndicatorType}
import org.apache.flink.table.planner.plan.metadata.FlinkRelMetadataQuery
import org.apache.flink.table.planner.plan.nodes.FlinkConventions
import org.apache.flink.table.planner.plan.nodes.logical.{FlinkLogicalAggregate, FlinkLogicalCalc, FlinkLogicalJoin, FlinkLogicalRank}
import org.apache.flink.table.planner.plan.nodes.physical.stream.{StreamPhysicalIntervalJoin, StreamPhysicalRank, StreamPhysicalTemporalSort}
import org.apache.flink.table.planner.plan.utils.{RankProcessStrategy, RankUtil, WindowJoinUtil}
import org.apache.flink.table.planner.plan.utils.WindowUtil.groupingContainsWindowStartEnd
import org.apache.flink.table.runtime.operators.rank.{ConstantRankRange, RankType}
import org.apache.flink.table.types.logical.IntType

import org.apache.calcite.plan.{RelOptRule, RelOptRuleCall}
import org.apache.calcite.plan.RelOptRule.{any, operand}
import org.apache.calcite.rel.`type`.{RelDataType, RelDataTypeField, RelDataTypeFieldImpl, RelDataTypeSystem}
import org.apache.calcite.rel.{RelCollation, RelCollations, RelFieldCollation}
import org.apache.calcite.rel.RelNode
import org.apache.calcite.rel.convert.ConverterRule.Config
import org.apache.calcite.rel.core.JoinRelType
import org.apache.calcite.rel.hint.RelHint
import org.apache.calcite.rel.logical.LogicalProject
import org.apache.calcite.rex.{RexInputRef, RexNode, RexProgram}
import org.apache.calcite.util.ImmutableBitSet

import java.util
import java.util.Collections

import scala.collection.convert.ImplicitConversions.`iterable AsScalaIterable`

/**
* Rule that matches [[FlinkLogicalAggregate]], and converts it to [[FlinkLogicalRank]] in the case
* of SELECT DISTINCT queries.
*
* e.g. {SELECT DISTINCT a, b, c;} will be converted to [[FlinkLogicalRank]] instead of
* [[FlinkLogicalAggregate]] in rowtime.
*/
class StreamLogicalOptimizeSelectDistinctRule
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@yiyutian1 and I worked on this together and we started with a Scala example.

Given that we are working on migrating the Scala rules to Java, could you take a look at migrating this rule to Java?

Copy link
Author

@yiyutian1 yiyutian1 Dec 6, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks for the comment Jim!
Are we migrating from Scala->Java for converters now too, or are we mainly doing it for builtInFunctions?

My impression is that for buildInFunctions we want that migration because auto-generated Java code is hard to maintain, but that doesn't seem to be a problem here.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@snuyanzin , could you provide some feedback here?
Could we try merging this ticket as is, so that the optimizer can be available soon, and then we can do the migration in a separate effort?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it would be great to see green ci first

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The CI is green! Woohoo!
Could we get some feedback? @snuyanzin
Many thanks.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Ideally it would be great to have it converted to java in this PR.
I looked into some previous PR and this is how it was: if a rule was new then it was requested to have it in java
if it is an old one then it's ok to convert it in a separate PR

extends RelOptRule(operand(classOf[FlinkLogicalAggregate], any)) {
private val classLoader = Thread.currentThread().getContextClassLoader
private val typeSystem = RelDataTypeSystem.DEFAULT
private val typeFactory = new FlinkTypeFactory(classLoader, typeSystem)
private val intType: RelDataType =
typeFactory.createFieldTypeFromLogicalType(new IntType(false))

override def matches(call: RelOptRuleCall): Boolean = {
val rel: FlinkLogicalAggregate = call.rel(0)
// check if it's a SELECT DISTINCT query
val ret =
rel.getGroupSet.cardinality() == rel.getRowType.getFieldCount && rel.getAggCallList.isEmpty

val mq = call.getMetadataQuery
val fmq = FlinkRelMetadataQuery.reuseOrCreate(mq)
val windowProperties = fmq.getRelWindowProperties(rel.getInput)
val grouping = rel.getGroupSet
if (groupingContainsWindowStartEnd(grouping, windowProperties)) {
return false // do not match if the grouping set contains window start and end
}

if (ret) {
rel.getGroupSet.toList.foreach(
i => {
val field: RelDataTypeField = rel.getInput.getRowType.getFieldList.get(i)
if (isTimeIndicatorType(field.getType)) {
return false
}
})
}
ret
}

override def onMatch(call: RelOptRuleCall): Unit = {
val agg: FlinkLogicalAggregate = call.rel(0)

val input = agg.getInput
val traitSet = agg.getTraitSet
val cluster = agg.getCluster

// Create a list of all group keys
val groupKeys = agg.getGroupSet

// Create a projection to select only the fields in the DISTINCT clause
val projectList: JList[RexNode] = {
val list = new util.ArrayList[RexNode](groupKeys.cardinality())
groupKeys.toList.foreach(i => list.add(RexInputRef.of(i, input.getRowType)))
list
}

// Create the projected row type
val projectedFields: JList[RelDataTypeField] = {
val fields = new util.ArrayList[RelDataTypeField](projectList.size())
projectList.forEach {
rexNode =>
val rexInputRef = rexNode.asInstanceOf[RexInputRef]
fields.add(input.getRowType.getFieldList.get(rexInputRef.getIndex))
}
fields
}

// Create the projected row type
val projectedRowType: RelDataType = typeFactory.createStructType(projectedFields)

// Create a RelCollation based on all group keys
val fieldCollations: JList[RelFieldCollation] = {
val collations = new util.ArrayList[RelFieldCollation](groupKeys.cardinality())
groupKeys.foreach {
key => collations.add(new RelFieldCollation(key, RelFieldCollation.Direction.ASCENDING))
}
collations
}
val collation: RelCollation = RelCollations.of(fieldCollations)

// Create a projection to select only the fields in the DISTINCT clause
val projection: RelNode = FlinkLogicalCalc.create(
input,
RexProgram.create(
input.getRowType,
projectList,
null,
projectedRowType,
cluster.getRexBuilder
))

val rank = new FlinkLogicalRank(
cluster,
traitSet,
projection,
groupKeys,
collation,
RankType.ROW_NUMBER,
new ConstantRankRange(1, 1), // We only want the first row for each group
new RelDataTypeFieldImpl("rk", projectedRowType.getFieldCount - 1, intType),
false
)
try RankUtil.canConvertToDeduplicate(rank)
catch {
case _: Exception =>
return
}
call.transformTo(rank)
}
}

object StreamLogicalOptimizeSelectDistinctRule {
val INSTANCE = new StreamLogicalOptimizeSelectDistinctRule()
}
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,14 @@ LogicalSink(table=[default_catalog.default_database.partitioned_sink], targetCol
== Optimized Physical Plan ==
Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[4],[0],[3]], fields=[a, EXPR$1, d, e, EXPR$4, EXPR$5])
+- Calc(select=[a, null:VARCHAR(2147483647) CHARACTER SET "UTF-16LE" AS EXPR$1, d, e, null:BIGINT AS EXPR$4, null:INTEGER AS EXPR$5])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])

== Optimized Execution Plan ==
Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[4],[0],[3]], fields=[a, EXPR$1, d, e, EXPR$4, EXPR$5])
+- Calc(select=[a, null:VARCHAR(2147483647) AS EXPR$1, d, e, null:BIGINT AS EXPR$4, null:INTEGER AS EXPR$5])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down Expand Up @@ -119,7 +119,7 @@ LogicalSink(table=[default_catalog.default_database.sink], targetColumns=[[1],[4
<![CDATA[
Sink(table=[default_catalog.default_database.sink], targetColumns=[[1],[4],[0],[6],[5],[2],[3]], fields=[a, b, c, d, e, f, g])
+- Calc(select=[a, b, c, d, e, 123 AS f, 456 AS g])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down Expand Up @@ -164,7 +164,7 @@ LogicalSink(table=[default_catalog.default_database.partitioned_sink], targetCol
<![CDATA[
Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[4],[0],[6],[5],[2],[3]], fields=[a, c, d, e, f, g])
+- Calc(select=[a, c, d, e, 123 AS f, 456 AS g])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down Expand Up @@ -221,11 +221,11 @@ Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[
+- Exchange(distribution=[hash[a, c, d, e, f, g]])
+- Union(all=[true], union=[a, c, d, e, f, g, vcol_marker])
:- Calc(select=[a, c, d, e, CAST(123 AS BIGINT) AS f, CAST(456 AS INTEGER) AS g, 1 AS vcol_marker])
: +- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
: +- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
: +- Exchange(distribution=[hash[a, b, c, d, e]])
: +- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
+- Calc(select=[a, c, d, e, CAST(123 AS BIGINT) AS f, CAST(456 AS INTEGER) AS g, -1 AS vcol_marker])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down Expand Up @@ -299,11 +299,11 @@ Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[
+- Exchange(distribution=[hash[a, c, d, e, f, g]])
+- Union(all=[true], union=[a, c, d, e, f, g, vcol_left_marker, vcol_right_marker])
:- Calc(select=[a, c, d, e, CAST(123 AS BIGINT) AS f, CAST(456 AS INTEGER) AS g, true AS vcol_left_marker, null:BOOLEAN AS vcol_right_marker])
: +- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
: +- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
: +- Exchange(distribution=[hash[a, b, c, d, e]])
: +- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
+- Calc(select=[a, c, d, e, CAST(456 AS BIGINT) AS f, CAST(789 AS INTEGER) AS g, null:BOOLEAN AS vcol_left_marker, true AS vcol_right_marker])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down Expand Up @@ -455,15 +455,15 @@ LogicalSink(table=[default_catalog.default_database.partitioned_sink], targetCol
<![CDATA[
Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[4],[0],[6],[5],[2],[3]], fields=[a, c, d, e, f, g])
+- Calc(select=[a, c, d, e, CAST(EXPR$4 AS BIGINT) AS f, CAST(EXPR$5 AS INTEGER) AS g])
+- GroupAggregate(groupBy=[a, c, d, e, EXPR$4, EXPR$5], select=[a, c, d, e, EXPR$4, EXPR$5])
+- Rank(strategy=[RetractStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, c, d, e, EXPR$4, EXPR$5], orderBy=[a ASC, c ASC, d ASC, e ASC, EXPR$4 ASC, EXPR$5 ASC], select=[a, c, d, e, EXPR$4, EXPR$5])
+- Exchange(distribution=[hash[a, c, d, e, EXPR$4, EXPR$5]])
+- Union(all=[true], union=[a, c, d, e, EXPR$4, EXPR$5])
:- Calc(select=[a, c, d, e, 123 AS EXPR$4, 456 AS EXPR$5])
: +- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
: +- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
: +- Exchange(distribution=[hash[a, b, c, d, e]])
: +- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
+- Calc(select=[a, c, d, e, 456 AS EXPR$4, 789 AS EXPR$5])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down Expand Up @@ -491,11 +491,11 @@ LogicalSink(table=[default_catalog.default_database.partitioned_sink], targetCol
Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[4],[0],[6],[5],[2],[3]], fields=[a, c, d, e, f, g])
+- Union(all=[true], union=[a, c, d, e, f, g])
:- Calc(select=[a, c, d, e, CAST(123 AS BIGINT) AS f, CAST(456 AS INTEGER) AS g])
: +- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
: +- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
: +- Exchange(distribution=[hash[a, b, c, d, e]])
: +- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
+- Calc(select=[a, c, d, e, CAST(456 AS BIGINT) AS f, CAST(789 AS INTEGER) AS g])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down Expand Up @@ -612,15 +612,15 @@ Sink(table=[default_catalog.default_database.partitioned_sink], targetColumns=[[
+- Union(all=[true], union=[a, c, d, e, f, g])
:- Union(all=[true], union=[a, c, d, e, f, g])
: :- Calc(select=[a, c, d, e, CAST(123 AS BIGINT) AS f, CAST(456 AS INTEGER) AS g])
: : +- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
: : +- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
: : +- Exchange(distribution=[hash[a, b, c, d, e]])
: : +- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
: +- Calc(select=[a, c, d, e, CAST(456 AS BIGINT) AS f, CAST(789 AS INTEGER) AS g])
: +- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
: +- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
: +- Exchange(distribution=[hash[a, b, c, d, e]])
: +- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
+- Calc(select=[a, c, d, e, CAST(456 AS BIGINT) AS f, CAST(123 AS INTEGER) AS g])
+- GroupAggregate(groupBy=[a, b, c, d, e], select=[a, b, c, d, e])
+- Rank(strategy=[AppendFastStrategy], rankType=[ROW_NUMBER], rankRange=[rankStart=1, rankEnd=1], partitionBy=[a, b, c, d, e], orderBy=[a ASC, b ASC, c ASC, d ASC, e ASC], select=[a, b, c, d, e])
+- Exchange(distribution=[hash[a, b, c, d, e]])
+- LegacyTableSourceScan(table=[[default_catalog, default_database, MyTable, source: [TestTableSource(a, b, c, d, e)]]], fields=[a, b, c, d, e])
]]>
Expand Down
Loading