A toolbox that provides hackable building blocks for generic 1D/2D/3D UNets, in PyTorch.
pip install a-unet
(Code): A convolutional only UNet generic to any dimension.
from typing import List
from a_unet import T, Downsample, Repeat, ResnetBlock, Skip, Upsample
from torch import nn
def UNet(
dim: int,
in_channels: int,
channels: List[int],
factors: List[int],
blocks: List[int],
) -> nn.Module:
# Check lengths
n_layers = len(channels)
assert n_layers == len(factors) and n_layers == len(blocks), "lengths must match"
# Resnet stack
def Stack(channels: int, n_blocks: int) -> nn.Module:
# The T function is used create a type template that pre-initializes paramters if called
Block = T(ResnetBlock)(dim=dim, in_channels=channels, out_channels=channels)
resnet = Repeat(Block, times=n_blocks)
return resnet
# Build UNet recursively
def Net(i: int) -> nn.Module:
if i == n_layers: return nn.Identity()
in_ch, out_ch = (channels[i - 1] if i > 0 else in_channels), channels[i]
factor = factors[i]
# Wraps modules with skip connection that merges paths with torch.add
return Skip(torch.add)(
Downsample(dim=dim, factor=factor, in_channels=in_ch, out_channels=out_ch),
Stack(channels=out_ch, n_blocks=blocks[i]),
Net(i + 1),
Stack(channels=out_ch, n_blocks=blocks[i]),
Upsample(dim=dim, factor=factor, in_channels=out_ch, out_channels=in_ch),
)
return Net(0)
unet = UNet(
dim=2,
in_channels=8,
channels=[256, 512],
factors=[2, 2],
blocks=[2, 2]
)
x = torch.randn(1, 8, 16, 16)
y = unet(x) # [1, 8, 16, 16]
(Code): ApeX is a UNet template complete with tools for easy customizability. The following example UNet includes multiple features: (1) custom item arrangement for resnets, modulation, attention, and cross attention, (2) custom skip connection with concatenation, (3) time conditioning (usually used for diffusion), (4) classifier free guidance.
from typing import Sequence, Optional, Callable
from a_unet import TimeConditioningPlugin, ClassifierFreeGuidancePlugin
from a_unet.apex import (
XUNet,
XBlock,
ResnetItem as R,
AttentionItem as A,
CrossAttentionItem as C,
ModulationItem as M,
SkipCat
)
def UNet(
dim: int,
in_channels: int,
channels: Sequence[int],
factors: Sequence[int],
items: Sequence[int],
attentions: Sequence[int],
cross_attentions: Sequence[int],
attention_features: int,
attention_heads: int,
embedding_features: Optional[int] = None,
skip_t: Callable = SkipCat,
resnet_groups: int = 8,
modulation_features: int = 1024,
embedding_max_length: int = 0,
use_classifier_free_guidance: bool = False,
out_channels: Optional[int] = None,
):
# Check lengths
num_layers = len(channels)
sequences = (channels, factors, items, attentions, cross_attentions)
assert all(len(sequence) == num_layers for sequence in sequences)
# Define UNet type with time conditioning and CFG plugins
UNet = TimeConditioningPlugin(XUNet)
if use_classifier_free_guidance:
UNet = ClassifierFreeGuidancePlugin(UNet, embedding_max_length)
return UNet(
dim=dim,
in_channels=in_channels,
out_channels=out_channels,
blocks=[
XBlock(
channels=channels,
factor=factor,
items=([R, M] + [A] * n_att + [C] * n_cross) * n_items,
) for channels, factor, n_items, n_att, n_cross in zip(*sequences)
],
skip_t=skip_t,
attention_features=attention_features,
attention_heads=attention_heads,
embedding_features=embedding_features,
modulation_features=modulation_features,
resnet_groups=resnet_groups
)
unet = UNet(
dim=2,
in_channels=2,
channels=[128, 256, 512, 1024],
factors=[2, 2, 2, 2],
items=[2, 2, 2, 2],
attentions=[0, 0, 0, 1],
cross_attentions=[1, 1, 1, 1],
attention_features=64,
attention_heads=8,
embedding_features=768,
use_classifier_free_guidance=False
)
x = torch.randn(2, 2, 64, 64)
time = [0.2, 0.5]
embedding = torch.randn(2, 512, 768)
y = unet(x, time=time, embedding=embedding) # [2, 2, 64, 64]