Skip to content

Virtual Adversarial Training (VAT) techniques in PyTorch

License

Notifications You must be signed in to change notification settings

archinetai/vat-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A collection of VAT (Virtual Adversarial Training) methods, in PyTorch.

Install

$ pip install vat-pytorch

PyPI - Python Version

API

SMART

The SMART paper proposes to find the noise that maximally perturbs the logits when added to the embedding layer, and to use a loss function to make sure that the perturbed logits are as close as possible to the predicted logits.

from vat_pytorch import SMARTLoss, inf_norm 

loss = SMARTLoss(
    model: nn.Module,
    loss_fn: Callable,
    loss_last_fn: Callable = None, 
    norm_fn: Callable = inf_norm, 
    num_steps: int = 1,
    step_size: float = 1e-3, 
    epsilon: float = 1e-6,
    noise_var: float = 1e-5
)

ALICE

The ALICE paper is analogous to the SMART paper, but adds an additional term to make sure that the perturbed logits are as close as possible to both the predicted logits and the ground truth labels.

from vat_pytorch import ALICELoss, inf_norm 

loss = ALICEPPLoss(
    model: nn.Module,
    loss_fn: Callable,
    num_classes: int,
    loss_last_fn: Callable = None,
    gold_loss_fn: Callable = None,
    gold_loss_last_fn: Callable = None,
    norm_fn: Callable = inf_norm,
    alpha: float = 1,
    num_steps: int = 1,
    step_size: float = 1e-3,
    epsilon: float = 1e-6,
    noise_var: float = 1e-5,
)

ALICE++

The ALICE++ paper is analogous to the ALICE paper, but instead of adding noise to the embedding layer, it picks a random layer from the network at each iteration on which to add the noise.

from vat_pytorch import ALICEPPLoss, ALICEPPModule, inf_norm 

loss = ALICEPPLoss(
    model: ALICEPPModule,
    num_classes: int,
    loss_fn: Callable,
    num_layers: int,
    max_layer: int = None,
    loss_last_fn: Callable = None,
    gold_loss_fn: Callable = None, 
    gold_loss_last_fn: Callable = None, 
    norm_fn: Callable = inf_norm, 
    alpha: float = 1,
    num_steps: int = 1,
    step_size: float = 1e-3, 
    epsilon: float = 1e-6,
    noise_var: float = 1e-5,
)

Usage (Classification)

Extract Model

The first thing we have to do is extract the chunk of the model that we want to perturb adversarially. A generic example with Huggingface's RoBERTa for sequence classification is given.

import torch.nn as nn 
from transformers import AutoModelForSequenceClassification

class ExtractedRoBERTa(nn.Module):

    def __init__(self):
        super().__init__()
        model = AutoModelForSequenceClassification.from_pretrained('roberta-base')
        self.roberta = model.roberta
        self.layers = model.roberta.encoder.layer  
        self.classifier = model.classifier 
        self.attention_mask = None 
        self.num_layers = len(self.layers) - 1 

    def forward(self, hidden, with_hidden_states = False, start_layer = 0):
        """ Forwards the hidden value from self.start_layer layer to the logits. """
        hidden_states = [hidden] 
        
        for layer in self.layers[start_layer:]:
            hidden = layer(hidden, attention_mask = self.attention_mask)[0]
            hidden_states += [hidden]

        logits = self.classifier(hidden)

        return (logits, hidden_states) if with_hidden_states else logits 

    def get_embeddings(self, input_ids):
        """ Computes first embedding layer given inputs_ids """ 
        return self.roberta.embeddings(input_ids)

    def set_attention_mask(self, attention_mask):
        """ Sets the correct mask on all subsequent forward passes """ 
        self.attention_mask = self.roberta.get_extended_attention_mask(
            attention_mask, 
            input_shape = attention_mask.shape, 
            device = attention_mask.device
        ) # (b, 1, 1, s) 

The function set_attention_mask is used to fix the attention mask for all subsequent forward calls, this is necessary if we want to use a mask using any VAT loss. The parameter start_layer in the forward function is necessary only if we are using ALICEPPLoss since the loss function needs a way to change the start layer internally.

SMART

import torch.nn as nn  
import torch.nn.functional as F 
from vat_pytorch import SMARTLoss, kl_loss, sym_kl_loss

class SMARTClassificationModel(nn.Module):
    # b: batch_size, s: sequence_length, d: hidden_size , n: num_labels

    def __init__(self, extracted_model, weight = 1.0):
        super().__init__()
        self.model = extracted_model 
        self.weight = weight
        self.vat_loss = SMARTLoss(model = extracted_model, loss_fn = kl_loss, loss_last_fn = sym_kl_loss)

    def forward(self, input_ids, attention_mask, labels):
        """ input_ids: (b, s), attention_mask: (b, s), labels: (b,) """
        # Get input embeddings 
        embeddings = self.model.get_embeddings(input_ids)
        # Set mask and compute logits 
        self.model.set_attention_mask(attention_mask)
        logits = self.model(embeddings)
        # Compute CE loss  
        ce_loss = F.cross_entropy(logits.view(-1, 2), labels.view(-1))
        # Compute VAT loss
        vat_loss = self.vat_loss(embeddings, logits) 
        # Merge losses 
        loss = ce_loss + self.weight * vat_loss
        return logits, loss

ALICE

import torch.nn as nn  
import torch.nn.functional as F 
from vat_pytorch import ALICELoss, kl_loss

class ALICEClassificationModel(nn.Module):
    # b: batch_size, s: sequence_length, d: hidden_size , n: num_labels

    def __init__(self, extracted_model):
        super().__init__()
        self.model = extracted_model 
        self.vat_loss = ALICELoss(model = extracted_model, loss_fn = kl_loss, num_classes = 2)

    def forward(self, input_ids, attention_mask, labels):
        """ input_ids: (b, s), attention_mask: (b, s), labels: (b,) """
        # Get input embeddings 
        embeddings = self.model.get_embeddings(input_ids)
        # Set iteration specific data (e.g. attention mask) 
        self.model.set_attention_mask(attention_mask)
        # Compute logits 
        logits = self.model(embeddings)
        # Compute VAT loss
        loss = self.vat_loss(embeddings, logits, labels) 
        return logits, loss

ALICE++

import torch.nn as nn  
import torch.nn.functional as F 
from vat_pytorch import ALICEPPLoss, kl_loss

class ALICEPPClassificationModel(nn.Module):
    # b: batch_size, s: sequence_length, d: hidden_size , n: num_labels

    def __init__(self, extracted_model):
        super().__init__()
        self.model = extracted_model 
        self.vat_loss = ALICEPPLoss(
            model = extracted_model, 
            loss_fn = kl_loss,
            num_layers = self.model.num_layers,
            num_classes = 2 
        )
        
    def forward(self, input_ids, attention_mask, labels):
        """ input_ids: (b, s), attention_mask: (b, s), labels: (b,) """
        # Get input embeddings 
        embeddings = self.model.get_embeddings(input_ids)
        # Set iteration specific data (e.g. attention mask) 
        self.model.set_attention_mask(attention_mask)
        # Compute logits 
        logits, hidden_states = self.model(embeddings, with_hidden_states = True) 
        # Compute VAT loss 
        loss = self.vat_loss(hidden_states, logits, labels) 
        return logits, loss

Note that extracted_model requires a function with the following signature forward(self, hidden: Tensor, *, start_layer: int) -> Tensor, the interface ALICEPPModule (from vat_pytorch import ALICEPPModule) can be used instead of the nn.Module class on the extracted model to make sure that the method is present.

Wrapped Model Usage

Any of the above losses can be used as follows with the extracted model.

import torch 
from transformers import AutoTokenizer 

extracted_model = ExtractedRoBERTa()
tokenizer = AutoTokenizer.from_pretrained('roberta-base')
# Pick one: 
model = SMARTClassificationModel(extracted_model)
model = ALICEClassificationModel(extracted_model)
model = ALICEPPClassificationModel(extracted_model)
# Compute inputs 
text = ["This text belongs to class 1...", "This text belongs to class 0..."]
inputs = tokenizer(text, return_tensors='pt')
labels = torch.tensor([1, 0]) 
# Compute logits and loss 
logits, loss = model(input_ids = inputs['input_ids'], attention_mask = inputs['attention_mask'], labels = labels)
# To finetune do this for many steps  
loss.backward() 

Citations

@inproceedings{Jiang2020SMARTRA,
  title={SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization},
  author={Haoming Jiang and Pengcheng He and Weizhu Chen and Xiaodong Liu and Jianfeng Gao and Tuo Zhao},
  booktitle={ACL},
  year={2020}
}
@article{Pereira2020AdversarialTF,
  title={Adversarial Training for Commonsense Inference},
  author={Lis Kanashiro Pereira and Xiaodong Liu and Fei Cheng and Masayuki Asahara and Ichiro Kobayashi},
  journal={ArXiv},
  year={2020},
  volume={abs/2005.08156}
}
@inproceedings{Pereira2021ALICEAT,
  title={ALICE++: Adversarial Training for Robust and Effective Temporal Reasoning},
  author={Lis Kanashiro Pereira and Fei Cheng and Masayuki Asahara and Ichiro Kobayashi},
  booktitle={PACLIC},
  year={2021}
}

About

Virtual Adversarial Training (VAT) techniques in PyTorch

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages