-
-
Notifications
You must be signed in to change notification settings - Fork 85
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
New Root Solver: ITP Method #544
base: main
Are you sure you want to change the base?
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,354 @@ | ||
// Copyright 2018-2024 argmin developers | ||
// | ||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | ||
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or | ||
// http://opensource.org/licenses/MIT>, at your option. This file may not be | ||
// copied, modified, or distributed except according to those terms. | ||
|
||
use crate::core::{ | ||
ArgminFloat, CostFunction, Error, IterState, Problem, Solver, State, TerminationReason, KV, | ||
}; | ||
#[cfg(feature = "serde1")] | ||
use serde::{Deserialize, Serialize}; | ||
use thiserror::Error; | ||
|
||
/// Error to be thrown if ITP method is initialized with improper parameters. | ||
#[derive(Debug, Error)] | ||
pub enum ItpRootError { | ||
/// f(min) and f(max) must have different signs | ||
#[error("ItpRoot error: f(min) and f(max) must have different signs.")] | ||
WrongSign, | ||
/// tol must be positive | ||
#[error("ItpRoot error: tol must be positive.")] | ||
NegativeTol, | ||
/// tol must be nonzero | ||
#[error("ItpRoot error: tol must be nonzero.")] | ||
ZeroTol, | ||
/// max must be larger than min | ||
#[error("ItpRoot error: max must be larger than min.")] | ||
MinLargerThanMax, | ||
} | ||
|
||
/// # ITP method | ||
/// | ||
/// A root-finding algorithm, short for "interpolate, truncate, and project", | ||
/// that achieves superlinear convergence while retaining the worst-case | ||
/// performance of the bisection method. | ||
/// | ||
/// ## Requirements on the optimization problem | ||
/// | ||
/// The optimization problem is required to implement [`CostFunction`]. | ||
/// | ||
/// ## Reference | ||
/// | ||
/// [ITP Method]: https://en.wikipedia.org/wiki/ITP_Method | ||
/// [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]: https://dl.acm.org/doi/10.1145/3423597 | ||
#[derive(Clone)] | ||
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))] | ||
pub struct ItpRoot<F> { | ||
/// required relative accuracy | ||
tol: F, | ||
/// tuned hyper-parameter 1, controls truncation size | ||
kappa1: F, | ||
/// tuned hyper-parameter 2, controls truncation size | ||
kappa2: F, | ||
/// tuned hyper-parameter slack variable, controls projection interval size | ||
n0: F, | ||
/// left boundary of current interval | ||
a: F, | ||
/// right boundary of current interval | ||
b: F, | ||
/// function value at `a` | ||
fa: F, | ||
/// function value at `b` | ||
fb: F, | ||
/// iteration counter, used in the projection step | ||
j: F, | ||
/// n_(1/2), a preprocessing variable | ||
n1o2: F, | ||
/// a preprocessing variable | ||
nmax: F, | ||
} | ||
|
||
impl<F: ArgminFloat> ItpRoot<F> { | ||
/// Constructor | ||
/// The values `min` and `max` must be bracketing the root of the function. | ||
/// The parameter `tol` specifies the relative error to be targeted. | ||
/// The values `kappa1` and `kappa2` are hyper-parameters tuning the truncation size. | ||
/// The parameter `n0` is a hyper-parameter slack variable controlling the projection interval | ||
/// size. | ||
pub fn new(min: F, max: F, tol: F, kappa1: F, kappa2: F, n0: F) -> Self { | ||
ItpRoot { | ||
tol, | ||
kappa1, | ||
kappa2, | ||
n0, | ||
a: min, | ||
b: max, | ||
fa: F::nan(), | ||
fb: F::nan(), | ||
j: F::zero(), | ||
n1o2: F::nan(), | ||
nmax: F::nan(), | ||
} | ||
} | ||
|
||
/// Constructor with default hyperparameters | ||
/// The values `min` and `max` must be bracketing the root of the function. | ||
/// The parameter `tol` specifies the relative error to be targeted. | ||
/// kappa1 is defaulted to 0.2 / (max - min). | ||
/// kappa2 is defaulted to 2.0. | ||
/// n0 is defaulted to 1.0. | ||
pub fn from_defaults(min: F, max: F, tol: F) -> Self { | ||
Self::new( | ||
min, | ||
max, | ||
tol, | ||
// kappa1, suggested from paper | ||
float!(0.2) / (max - min), | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Wondering, maybe we want to have this function return There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This sounds like a good addition! |
||
// kappa2 | ||
float!(2.0), | ||
// n0 | ||
float!(1.0), | ||
) | ||
} | ||
} | ||
|
||
impl<O, F> Solver<O, IterState<F, (), (), (), (), F>> for ItpRoot<F> | ||
where | ||
O: CostFunction<Param = F, Output = F>, | ||
F: ArgminFloat, | ||
{ | ||
fn name(&self) -> &str { | ||
"ItpRoot" | ||
} | ||
|
||
fn init( | ||
&mut self, | ||
problem: &mut Problem<O>, | ||
// ItpRoot maintains its own state | ||
state: IterState<F, (), (), (), (), F>, | ||
) -> Result<(IterState<F, (), (), (), (), F>, Option<KV>), Error> { | ||
self.fa = problem.cost(&self.a)?; | ||
self.fb = problem.cost(&self.b)?; | ||
if self.fa * self.fb > float!(0.0) { | ||
return Err(ItpRootError::WrongSign.into()); | ||
} | ||
if self.tol < F::zero() { | ||
return Err(ItpRootError::NegativeTol.into()); | ||
} | ||
// This helps ensure the log evaluation is stable | ||
if self.a > self.b { | ||
return Err(ItpRootError::MinLargerThanMax.into()); | ||
} | ||
// It's important to check this to verify n1o2 doesn't panic | ||
if self.tol.is_zero() { | ||
return Err(ItpRootError::ZeroTol.into()); | ||
} | ||
Comment on lines
+137
to
+147
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I know that |
||
|
||
// Preprocessing | ||
self.n1o2 = ((self.b - self.a) / (float!(2.0) * self.tol)).log2(); | ||
self.nmax = self.n1o2 + self.n0; | ||
|
||
Ok((state.param(self.b).cost(self.fb.abs()), None)) | ||
} | ||
|
||
fn next_iter( | ||
&mut self, | ||
problem: &mut Problem<O>, | ||
// ItpRoot maintains its own state | ||
state: IterState<F, (), (), (), (), F>, | ||
) -> Result<(IterState<F, (), (), (), (), F>, Option<KV>), Error> { | ||
// Note: the headers here match the steps outlined on Wikipedia, with variable names to | ||
// match for clarity. | ||
|
||
// Calculating Parameters | ||
let b_minus_a = self.b - self.a; | ||
let x1o2 = (self.a + self.b) * float!(0.5); | ||
let r = self.tol * float!(2.0).powf(self.nmax + self.j) - b_minus_a * float!(0.5); | ||
let delta = self.kappa1 * b_minus_a.powf(self.kappa2); | ||
|
||
// Interpolation | ||
let xf = (self.fb * self.a - self.fa * self.b) / (self.fb - self.fa); | ||
|
||
// Truncation | ||
let bisect_falsi_delta = x1o2 - xf; | ||
let sigma = bisect_falsi_delta.signum(); | ||
let xt = if delta <= bisect_falsi_delta.abs() { | ||
xf + sigma * delta | ||
} else { | ||
x1o2 | ||
}; | ||
|
||
// Projection | ||
let xitp = if (xt - x1o2).abs() <= r { | ||
xt | ||
} else { | ||
x1o2 - sigma * r | ||
}; | ||
|
||
// Updating Interval | ||
let fitp = problem.cost(&xitp)?; | ||
if fitp > F::zero() { | ||
self.b = xitp; | ||
self.fb = fitp; | ||
} else if fitp < F::zero() { | ||
self.a = xitp; | ||
self.fa = fitp; | ||
} else { | ||
self.a = xitp; | ||
self.b = xitp; | ||
} | ||
self.j = self.j + float!(1.0); | ||
|
||
// Solver loop termination | ||
if (self.b - self.a) <= (float!(2.0) * self.tol) { | ||
let sol = (self.a + self.b) * float!(0.5); | ||
// TODO: This function evaluation serves no purpose other than to serve argmin's cost | ||
// method on the state. It feels wasteful. | ||
let f_sol = problem.cost(&sol)?; | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This bothers me, but maybe someone smarter than me might know a clever way to not do this. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I agree. Do I understand correctly that the algorithm itself does not require to compute the final cost function value? It is only required here because otherwise the cost function value would not be related to the final solution? |
||
return Ok(( | ||
state | ||
.terminate_with(TerminationReason::SolverConverged) | ||
.param(sol) | ||
.cost(f_sol.abs()), | ||
None, | ||
)); | ||
} | ||
|
||
Ok((state.param(self.b).cost(self.fb.abs()), None)) | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use crate::core::Executor; | ||
use approx::assert_relative_eq; | ||
|
||
#[derive(Clone)] | ||
struct Quadratic {} | ||
|
||
impl CostFunction for Quadratic { | ||
type Param = f64; | ||
type Output = f64; | ||
|
||
fn cost(&self, param: &Self::Param) -> Result<Self::Output, Error> { | ||
Ok(param.powi(2) - 1.0) // x^2 - 1 | ||
} | ||
} | ||
|
||
// This polynomial matches what is explored in the Wikipedia example | ||
#[derive(Clone)] | ||
struct Polynomial {} | ||
|
||
impl CostFunction for Polynomial { | ||
type Param = f64; | ||
type Output = f64; | ||
|
||
fn cost(&self, param: &Self::Param) -> Result<Self::Output, Error> { | ||
Ok(param.powi(3) - param - 2.0) // x^3 - x - 2 | ||
} | ||
} | ||
|
||
#[test] | ||
fn test_itp_negative_tol() { | ||
let min: f64 = 0.0; | ||
let max: f64 = 2.0; | ||
let tol: f64 = -1e-6; | ||
|
||
let mut solver: ItpRoot<f64> = ItpRoot::from_defaults(min, max, tol); | ||
let mut problem: Problem<Quadratic> = Problem::new(Quadratic {}); | ||
|
||
let result: Result<(IterState<f64, (), (), (), (), f64>, Option<KV>), Error> = | ||
solver.init(&mut problem, IterState::new()); | ||
|
||
// Check if the initialization fails and we get the correct error message | ||
assert!(result.is_err()); | ||
assert_eq!( | ||
result.err().unwrap().to_string(), | ||
"ItpRoot error: tol must be positive." | ||
); | ||
} | ||
|
||
#[test] | ||
fn test_itp_invalid_range() { | ||
let min: f64 = 2.0; | ||
let max: f64 = 3.0; | ||
let tol: f64 = 1e-6; | ||
|
||
let mut solver: ItpRoot<f64> = ItpRoot::from_defaults(min, max, tol); | ||
let mut problem: Problem<Quadratic> = Problem::new(Quadratic {}); | ||
|
||
let result: Result<(IterState<f64, (), (), (), (), f64>, Option<KV>), Error> = | ||
solver.init(&mut problem, IterState::new()); | ||
|
||
// Check if the initialization fails and we get the correct error message | ||
assert!(result.is_err()); | ||
assert_eq!( | ||
result.err().unwrap().to_string(), | ||
"ItpRoot error: f(min) and f(max) must have different signs." | ||
); | ||
} | ||
|
||
#[test] | ||
fn test_itp_valid_range() { | ||
let min: f64 = 0.0; | ||
let max: f64 = 2.0; | ||
let tol: f64 = 1e-6; | ||
|
||
let mut solver: ItpRoot<f64> = ItpRoot::from_defaults(min, max, tol); | ||
let mut problem: Problem<Quadratic> = Problem::new(Quadratic {}); | ||
|
||
let result: Result<(IterState<f64, (), (), (), (), f64>, Option<KV>), Error> = | ||
solver.init(&mut problem, IterState::new()); | ||
|
||
// Check if the initialization is successful | ||
assert!(result.is_ok()); | ||
} | ||
|
||
#[test] | ||
fn test_itp_find_quadratic_root() { | ||
let min: f64 = 0.0; | ||
let max: f64 = 2.0; | ||
let tol: f64 = 1e-6; | ||
let init_param: f64 = 1.5; | ||
|
||
let solver: ItpRoot<f64> = ItpRoot::from_defaults(min, max, tol); | ||
let problem: Quadratic = Quadratic {}; | ||
|
||
let res = Executor::new(problem, solver) | ||
.configure(|state| state.param(init_param).max_iters(100)) | ||
.run() | ||
.unwrap(); | ||
|
||
// Check if the result is close to the real root | ||
assert_relative_eq!(res.state.best_param.unwrap(), 1.0, epsilon = tol); | ||
} | ||
|
||
#[test] | ||
fn test_itp_find_polynomial_root() { | ||
let min: f64 = 1.0; | ||
let max: f64 = 2.0; | ||
let tol: f64 = 0.0005; | ||
let kappa1: f64 = 0.1; | ||
let kappa2: f64 = 2.0; | ||
let n0: f64 = 1.0; | ||
let init_param: f64 = 1.5; | ||
|
||
let solver: ItpRoot<f64> = ItpRoot::new(min, max, tol, kappa1, kappa2, n0); | ||
let problem: Polynomial = Polynomial {}; | ||
|
||
let res = Executor::new(problem, solver) | ||
.configure(|state| state.param(init_param).max_iters(100)) | ||
.run() | ||
.unwrap(); | ||
|
||
// Check if the result is close to the real root | ||
assert_relative_eq!( | ||
res.state.best_param.unwrap(), | ||
1.52138301273268, | ||
epsilon = tol | ||
); | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
// Copyright 2018-2024 argmin developers | ||
// | ||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or | ||
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or | ||
// http://opensource.org/licenses/MIT>, at your option. This file may not be | ||
// copied, modified, or distributed except according to those terms. | ||
|
||
//! # ITP method | ||
//! | ||
//! ## ItpRoot | ||
//! | ||
//! A root-finding algorithm, short for "interpolate, truncate, and project", | ||
//! that achieves superlinear convergence while retaining the worst-case | ||
//! performance of the bisection method. | ||
//! | ||
//! ### References | ||
//! | ||
//! [ITP Method]: https://en.wikipedia.org/wiki/ITP_Method | ||
//! [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]: https://dl.acm.org/doi/10.1145/3423597 | ||
|
||
mod itp_method; | ||
|
||
pub use itp_method::ItpRoot; |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Question out of curiosity: Are there any sane defaults for these parameters (ideally something mentioned in the paper)?