Skip to content

Commit

Permalink
Merge pull request #30 from artefactory/dev
Browse files Browse the repository at this point in the history
NCK v1.1
  • Loading branch information
bibimorlet authored Jun 15, 2020
2 parents 897c362 + 53b0cab commit 5957f7e
Show file tree
Hide file tree
Showing 15 changed files with 1,691 additions and 395 deletions.
4 changes: 2 additions & 2 deletions .env
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
PROJECT_ID=artefact-docker-containers
DOCKER_IMAGE=nautilus-connector-kit
DOCKER_TAG=1.4.0
DOCKER_IMAGE=nautilus-connectors-kit-dev
DOCKER_TAG=v1.1
DOCKER_REGISTRY=eu.gcr.io
5 changes: 2 additions & 3 deletions .github/workflows/buildtogcp.yml
Original file line number Diff line number Diff line change
Expand Up @@ -34,13 +34,12 @@ on:

# Environment variables available to all jobs and steps in this workflow
env:
GCP_PROJECT: ${{ secrets.GCP_PROJECT }}
GCP_EMAIL: ${{ secrets.GCP_EMAIL }}
PROJECT_ID: ${{ secrets.PROJECT_ID }}
DOCKER_TAG: ${{ github.run_id }}
DOCKER_REGISTRY: ${{ secrets.DOCKER_REGISTRY }}
DOCKER_IMAGE: ${{ secrets.DOCKER_IMAGE }}-${{ github.ref }}

CLOUDSDK_PYTHON_SITEPACKAGES: 1

jobs:
setup-build-publish:
Expand All @@ -55,7 +54,7 @@ jobs:
# Setup gcloud CLI
- uses: GoogleCloudPlatform/github-actions/setup-gcloud@master
with:
version: '270.0.0'
version: '290.0.1'
service_account_email: ${{ secrets.GCP_EMAIL }}
service_account_key: ${{ secrets.GCP_KEY }}

Expand Down
26 changes: 14 additions & 12 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,23 +6,25 @@ Nautilus connectors kit is a tool which aim is getting raw data from different s

### Readers

- Google DoubleClick Manager (DBM / DV360)
- Google Campaign Manager (CM / DCM)
- Google Search Ads 360 (SA360)
- Adobe Analytics 1.4
- Adobe Analytics 2.0
- Amazon S3
- Facebook Marketing
- Google Ads
- Google Analytics
- Google Search Console
- Google Sheets
- Google Cloud Storage
- Google Adwords
- Google Campaign Manager
- Google Display & Video 360
- Google Search Ads 360
- Google Search Console
- Facebook Business Manager
- Amazon S3
- Google Sheets
- Oracle
- SalesForce
- MySQL
- Radarly
- Adobe Analytics 1.4
- Yandex
- SalesForce
- Twitter Ads
- Yandex Campaign
- Yandex Statistics

### Writers

Expand Down Expand Up @@ -97,4 +99,4 @@ It is advised to do the following in a virtual env

* https://manikos.github.io/a-tour-on-python-packaging
* http://lucumr.pocoo.org/2014/1/27/python-on-wheels/
* https://pip.readthedocs.io/en/1.4.1/cookbook.html#controlling-setup-requires
* https://pip.readthedocs.io/en/1.4.1/cookbook.html#controlling-setup-requires
81 changes: 81 additions & 0 deletions nck/clients/adobe_client.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# GNU Lesser General Public License v3.0 only
# Copyright (C) 2020 Artefact
# [email protected]
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

import logging
from datetime import datetime, timedelta
import requests
import jwt
from tenacity import retry, wait_exponential, stop_after_delay

IMS_HOST = "ims-na1.adobelogin.com"
IMS_EXCHANGE = "https://ims-na1.adobelogin.com/ims/exchange/jwt"

logging.basicConfig(level="INFO")
logger = logging.getLogger()


class AdobeClient:
"""
Create an Adobe Client for JWT Authentification.
Doc: https://github.com/AdobeDocs/adobeio-auth/blob/stage/JWT/JWT.md
Most of the code is taken from this repo:
https://github.com/AdobeDocs/analytics-2.0-apis/tree/master/examples/jwt/python
"""

def __init__(self, client_id, client_secret, tech_account_id, org_id, private_key):
self.client_id = client_id
self.client_secret = client_secret
self.tech_account_id = tech_account_id
self.org_id = org_id
self.private_key = private_key

# Creating jwt_token attribute
logging.info("Getting jwt_token.")
self.jwt_token = jwt.encode(
{
"exp": datetime.utcnow() + timedelta(seconds=30),
"iss": self.org_id,
"sub": self.tech_account_id,
f"https://{IMS_HOST}/s/ent_analytics_bulk_ingest_sdk": True,
"aud": f"https://{IMS_HOST}/c/{self.client_id}",
},
self.private_key,
algorithm="RS256",
)

# Creating access_token attribute
logging.info("Getting access_token.")
self.access_token = self.get_access_token()

@retry(wait=wait_exponential(multiplier=60, min=60, max=1200), stop=stop_after_delay(3600))
def get_access_token(self):
post_body = {"client_id": self.client_id, "client_secret": self.client_secret, "jwt_token": self.jwt_token}
response = requests.post(IMS_EXCHANGE, data=post_body)
return response.json()["access_token"]

def build_request_headers(self, global_company_id):
"""
Build request headers to be used to interract with Adobe Analytics APIs 2.0.
"""
return {
"Accept": "application/json",
"Authorization": f"Bearer {self.access_token}",
"Content-Type": "application/json",
"x-api-key": self.client_id,
"x-proxy-global-company-id": global_company_id,
}
116 changes: 116 additions & 0 deletions nck/helpers/adobe_helper_2_0.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
# GNU Lesser General Public License v3.0 only
# Copyright (C) 2020 Artefact
# [email protected]
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 3 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

import logging
from datetime import datetime

logging.basicConfig(level="INFO")
logger = logging.getLogger()


class APIRateLimitError(Exception):
def __init__(self, message):
super().__init__(message)
logging.error(message)


def add_metric_container_to_report_description(
rep_desc, dimensions, metrics, breakdown_item_ids
):
"""
Filling the metricContainer section of a report description:
- Creates 1 filter per dimension breakdown x metric
- Applies filters to each metric
"""

nb_breakdowns = len(breakdown_item_ids)
nb_metrics = len(metrics)

rep_desc["metricContainer"]["metricFilters"] = [
{
"id": i + j * nb_breakdowns,
"type": "breakdown",
"dimension": f"variables/{dimensions[i]}",
"itemId": breakdown_item_ids[i],
}
for j in range(nb_metrics)
for i in range(nb_breakdowns)
]

rep_desc["metricContainer"]["metrics"] = [
{
"id": f"metrics/{metrics[j]}",
"filters": [i + j * nb_breakdowns for i in range(nb_breakdowns)],
}
for j in range(nb_metrics)
]

return rep_desc


def get_node_values_from_response(response):
"""
Extracting dimension values from a report response,
and returning them into a dictionnary of nodes: {name_itemId: value}
For instance: {'daterangeday_1200201': 'Mar 1, 2020'}
"""

name = response["columns"]["dimension"]["id"].split("/")[1]
values = [row["value"] for row in response["rows"]]
item_ids = [row["itemId"] for row in response["rows"]]

return {f"{name}_{item_id}": value for (item_id, value) in zip(item_ids, values)}


def get_item_ids_from_nodes(list_of_strings):
"""
Extacting item_ids from a list of nodes,
each node being expressed as 'name_itemId'
"""

return [string.split("_")[1] for string in list_of_strings if string]


def format_date(date_string):
"""
Input: "Jan 1, 2020"
Output: "2020-01-01"
"""
return datetime.strptime(date_string, "%b %d, %Y").strftime("%Y-%m-%d")


def parse_response(response, metrics, parent_dim_parsed):
"""
Parsing a raw JSON response into the following format:
{dimension: value, metric: value} (1 dictionnary per row)
"""

dimension = response["columns"]["dimension"]["id"].split("variables/")[1]

for row in response["rows"]:
parsed_row_metrics = {m: v for m, v in zip(metrics, row["data"])}
parsed_row = {
**parent_dim_parsed,
dimension: row["value"],
**parsed_row_metrics,
}
parsed_row = {
k: (format_date(v) if k == "daterangeday" else v)
for k, v in parsed_row.items()
}
yield parsed_row
Loading

0 comments on commit 5957f7e

Please sign in to comment.