Skip to content

Conversation

VincentAuriau
Copy link
Collaborator

No description provided.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Summary of Changes

Hello @VincentAuriau, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request introduces several small but impactful enhancements across the codebase. It refines the alea_carta model's implementation by improving code clarity and optimizing certain TensorFlow operations. Concurrently, it modernizes the project's dependency management by adopting PEP 621 standards in pyproject.toml and updating the Poetry lock file, ensuring a more robust and standardized build environment. Additionally, it sets up the example notebook to run on CPU by default.

Highlights

  • Code Refinements in alea_carta.py: Improved docstrings for clarity, removed explicit GPU detection logic, and optimized array creation for efficiency.
  • Basket Utility Calculation Optimization: Replaced tf.ragged operations with a more direct tf.gather call in compute_batch_utility for potentially better performance and simpler tensor handling.
  • Project Metadata Standardization: Migrated core and optional dependency definitions, as well as project URLs, to the PEP 621 standard within pyproject.toml. This enhances project configurability and maintainability.
  • Dependency Management Update: The Poetry version was upgraded, and dependency groups and markers were refined in poetry.lock to ensure a more consistent and robust development environment across different Python versions and platforms.
  • Notebook Environment Control: Added an explicit setting to force CPU execution for the alea_carta.ipynb notebook, preventing unintended GPU usage.
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point in your pull request via creating an issue comment (i.e. comment on the pull request page) using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in issue comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist is currently in preview and may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments to provide feedback.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configure Gemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request introduces several small enhancements. It refactors the pyproject.toml to align with modern packaging standards (PEP 621), which is a great improvement. It also includes performance optimizations in alea_carta.py by replacing ragged tensor operations with a more efficient dense tensor approach. Docstrings have been improved for clarity, and a notebook has been updated for better reproducibility.

I've left a couple of comments regarding code maintainability: one about removing a large block of commented-out code, and another about a potentially redundant section in pyproject.toml. Overall, these are positive changes that improve the quality of the codebase.

Comment on lines +118 to +120
[tool.setuptools]
packages = ["choice_learn"]

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

medium

This [tool.setuptools] section seems redundant given that the build-backend is poetry.core.masonry.api. Poetry should automatically discover the choice_learn package, and this section might be confusing as it will not be used by Poetry. If it's for a specific reason, a comment explaining it would be helpful. Otherwise, it could be removed.

Copy link
Contributor

github-actions bot commented Jul 18, 2025

Coverage

Coverage Report for Python 3.10
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py480100% 
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py27324411%79–157, 173–240, 251–262, 299–381, 417–441, 490–544, 582–616, 662–747, 788–801, 825–964, 998–1050, 1060–1082, 1099–1153
   dataset.py1371291%71–74, 362, 369, 523–528, 560–567
   preprocessing.py947817%43–45, 128–364
   shopper.py3582792%165, 194, 343, 363, 378, 381, 395, 684–688, 781–785, 883–887, 1218, 1297, 1335–1336, 1440–1441, 1517–1518
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6473395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2392390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 577
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py393499%39, 154–155, 715
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py2571295%144, 186, 283, 302, 342, 349, 378, 397, 428–429, 438–439
   baseline_models.py490100% 
   conditional_logit.py2362191%46, 49, 51, 82, 85, 88–92, 95–99, 133, 298, 335, 392, 467–473, 598, 632, 739, 743
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
TOTAL509095381% 

Tests Skipped Failures Errors Time
165 0 💤 0 ❌ 0 🔥 4m 57s ⏱️

Copy link
Contributor

github-actions bot commented Jul 18, 2025

Coverage

Coverage Report for Python 3.11
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py480100% 
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py27324411%79–157, 173–240, 251–262, 299–381, 417–441, 490–544, 582–616, 662–747, 788–801, 825–964, 998–1050, 1060–1082, 1099–1153
   dataset.py1371291%71–74, 362, 369, 523–528, 560–567
   preprocessing.py947817%43–45, 128–364
   shopper.py3582792%165, 194, 343, 363, 378, 381, 395, 684–688, 781–785, 883–887, 1218, 1297, 1335–1336, 1440–1441, 1517–1518
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6473395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2392390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 577
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py393499%39, 154–155, 715
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py2571295%144, 186, 283, 302, 342, 349, 378, 397, 428–429, 438–439
   baseline_models.py490100% 
   conditional_logit.py2362191%46, 49, 51, 82, 85, 88–92, 95–99, 133, 298, 335, 392, 467–473, 598, 632, 739, 743
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
TOTAL509095381% 

Tests Skipped Failures Errors Time
165 0 💤 0 ❌ 0 🔥 5m 1s ⏱️

Copy link
Contributor

github-actions bot commented Jul 18, 2025

Coverage

Coverage Report for Python 3.9
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py480100% 
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py27124211%79–157, 173–240, 251–262, 299–381, 417–441, 490–544, 582–616, 662–747, 788–801, 825–964, 998–1050, 1060–1082, 1099–1153
   dataset.py1371291%71–74, 362, 369, 523–528, 560–567
   preprocessing.py947817%43–45, 128–364
   shopper.py3582792%165, 194, 343, 363, 378, 381, 395, 684–688, 781–785, 883–887, 1218, 1297, 1335–1336, 1440–1441, 1517–1518
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6473395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2392390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 577
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py393599%43–44, 154–155, 715
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py2571295%144, 186, 283, 302, 342, 349, 378, 397, 428–429, 438–439
   baseline_models.py490100% 
   conditional_logit.py2362191%46, 49, 51, 82, 85, 88–92, 95–99, 133, 298, 335, 392, 467–473, 598, 632, 739, 743
   halo_mnl.py124298%186, 374
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2362360%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
TOTAL508695081% 

Tests Skipped Failures Errors Time
165 0 💤 0 ❌ 0 🔥 4m 43s ⏱️

Copy link
Contributor

github-actions bot commented Jul 18, 2025

Coverage

Coverage Report for Python 3.12
FileStmtsMissCoverMissing
choice_learn
   __init__.py20100% 
   tf_ops.py480100% 
choice_learn/basket_models
   __init__.py40100% 
   alea_carta.py27324411%79–157, 173–240, 251–262, 299–381, 417–441, 490–544, 582–616, 662–747, 788–801, 825–964, 998–1050, 1060–1082, 1099–1153
   dataset.py1371291%71–74, 362, 369, 523–528, 560–567
   preprocessing.py947817%43–45, 128–364
   shopper.py3582792%165, 194, 343, 363, 378, 381, 395, 684–688, 781–785, 883–887, 1218, 1297, 1335–1336, 1440–1441, 1517–1518
choice_learn/basket_models/utils
   __init__.py00100% 
   permutation.py22195%37
choice_learn/data
   __init__.py30100% 
   choice_dataset.py6473395%198, 250, 283, 421, 463–464, 589, 724, 738, 840, 842, 937, 957–961, 1140, 1159–1161, 1179–1181, 1209, 1214, 1223, 1240, 1281, 1293, 1307, 1346, 1361, 1366, 1395, 1408, 1443–1444
   indexer.py2392390%20, 31, 45, 60–67, 202–204, 219–230, 265, 291, 577
   storage.py161696%22, 33, 51, 56, 61, 71
   store.py72720%3–275
choice_learn/datasets
   __init__.py40100% 
   base.py393499%39, 154–155, 715
   expedia.py1028319%37–301
   tafeng.py490100% 
choice_learn/datasets/data
   __init__.py00100% 
choice_learn/models
   __init__.py14286%15–16
   base_model.py2571295%144, 186, 283, 302, 342, 349, 378, 397, 428–429, 438–439
   baseline_models.py490100% 
   conditional_logit.py2362191%46, 49, 51, 82, 85, 88–92, 95–99, 133, 298, 335, 392, 467–473, 598, 632, 739, 743
   halo_mnl.py1241885%186, 341, 360, 364–380
   latent_class_base_model.py2863986%55–61, 273–279, 288, 325–330, 497–500, 605, 624, 665–701, 715, 720, 751–752, 774–775, 869–870, 974
   latent_class_mnl.py62690%257–261, 296
   learning_mnl.py67396%157, 182, 188
   nested_logit.py2911296%55, 77, 160, 269, 351, 484, 530, 600, 679, 848, 900, 904
   reslogit.py132695%285, 360, 369, 374, 382, 432
   rumnet.py236399%748–751, 982
   simple_mnl.py139696%167, 275, 347, 355, 357, 359
   tastenet.py94397%142, 180, 188
choice_learn/toolbox
   __init__.py00100% 
   assortment_optimizer.py27678%28–30, 93–95, 160–162
   gurobi_opt.py2382380%3–675
   or_tools_opt.py2301195%103, 107, 296–305, 315, 319, 607, 611
TOTAL509096981% 

Tests Skipped Failures Errors Time
165 0 💤 1 ❌ 0 🔥 5m 43s ⏱️

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant