forked from AutoViML/featurewiz
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
22 changed files
with
11,490 additions
and
29 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
# -*- coding: utf-8 -*- | ||
################################################################################ | ||
# featurewiz - advanced feature engineering and best features selection in single line of code | ||
# Python v3.6+ | ||
# Created by Ram Seshadri | ||
# Licensed under Apache License v2 | ||
################################################################################ | ||
# Version | ||
from .__version__ import __version__ | ||
from .featurewiz import featurewiz | ||
from .featurewiz import FE_split_one_field_into_many, FE_add_groupby_features_aggregated_to_dataframe | ||
from .featurewiz import FE_start_end_date_time_features | ||
from .featurewiz import classify_features | ||
from .featurewiz import classify_columns,FE_combine_rare_categories | ||
from .featurewiz import FE_count_rows_for_all_columns_by_group | ||
from .featurewiz import FE_add_age_by_date_col, FE_split_add_column, FE_get_latest_values_based_on_date_column | ||
from .featurewiz import FE_capping_outliers_beyond_IQR_Range | ||
from .featurewiz import EDA_classify_and_return_cols_by_type, EDA_classify_features_for_deep_learning | ||
from .featurewiz import FE_create_categorical_feature_crosses, EDA_find_skewed_variables | ||
from .featurewiz import FE_kmeans_resampler, FE_find_and_cap_outliers, EDA_find_outliers | ||
from .featurewiz import split_data_n_ways, FE_concatenate_multiple_columns | ||
from .featurewiz import FE_discretize_numeric_variables, reduce_mem_usage | ||
from .ml_models import simple_XGBoost_model, simple_LightGBM_model, complex_XGBoost_model | ||
from .ml_models import complex_LightGBM_model,data_transform, get_class_weights | ||
from .my_encoders import My_LabelEncoder, Groupby_Aggregator, My_LabelEncoder_Pipe, Ranking_Aggregator, DateTime_Transformer | ||
from .my_encoders import Rare_Class_Combiner, Rare_Class_Combiner_Pipe, FE_create_time_series_features, Binning_Transformer | ||
from .my_encoders import Column_Names_Transformer, FE_convert_all_object_columns_to_numeric, Numeric_Transformer | ||
from .my_encoders import TS_Lagging_Transformer, TS_Fourier_Transformer, TS_Trend_Seasonality_Transformer | ||
from .my_encoders import TS_Lagging_Transformer_Pipe, TS_Fourier_Transformer_Pipe | ||
from lazytransform import LazyTransformer, SuloRegressor, SuloClassifier, print_regression_metrics, print_classification_metrics | ||
from lazytransform import print_regression_model_stats, YTransformer, print_sulo_accuracy | ||
from .sulov_method import FE_remove_variables_using_SULOV_method | ||
from .featurewiz import FE_transform_numeric_columns_to_bins, FE_create_interaction_vars | ||
from .stacking_models import Stacking_Classifier, Blending_Regressor, Stacking_Regressor, stacking_models_list | ||
from .stacking_models import StackingClassifier_Multi, analyze_problem_type_array | ||
from .stacking_models import DenoisingAutoEncoder, VariationalAutoEncoder | ||
from .stacking_models import GAN, GANAugmenter | ||
from .featurewiz import EDA_binning_numeric_column_displaying_bins, FE_calculate_duration_from_timestamp | ||
from .featurewiz import FE_convert_mixed_datatypes_to_string, FE_drop_rows_with_infinity | ||
from .featurewiz import EDA_find_remove_columns_with_infinity, FE_split_list_into_columns | ||
from .featurewiz import EDA_remove_special_chars, FE_remove_commas_in_numerics | ||
from .featurewiz import EDA_randomly_select_rows_from_dataframe, remove_duplicate_cols_in_dataset | ||
from .featurewiz import cross_val_model_predictions, get_class_distribution | ||
from .featurewiz import FeatureWiz | ||
################################################################################ | ||
if __name__ == "__main__": | ||
module_type = 'Running' | ||
else: | ||
module_type = 'Imported' | ||
version_number = __version__ | ||
print("""%s featurewiz %s. Use the following syntax: | ||
>>> wiz = FeatureWiz(feature_engg = '', nrows=None, transform_target=True, scalers="std", | ||
category_encoders="auto", add_missing=False, verbose=0. imbalanced=False, | ||
ae_options={}) | ||
>>> X_train_selected, y_train = wiz.fit_transform(X_train, y_train) | ||
>>> X_test_selected = wiz.transform(X_test) | ||
>>> selected_features = wiz.features | ||
""" %(module_type, version_number)) | ||
################################################################################ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
# -*- coding: utf-8 -*- | ||
"""Specifies the version of the featurewiz package.""" | ||
|
||
__title__ = "featurewiz" | ||
__author__ = "Ram Seshadri" | ||
__description__ = "Advanced Feature Engineering and Feature Selection for any data set, any size" | ||
__url__ = "https://github.com/Auto_ViML/featurewiz.git" | ||
__version__ = "0.5.0" | ||
__license__ = "Apache License 2.0" | ||
__copyright__ = "2020-23 Google" |
Oops, something went wrong.