Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add predictive_finder method (experimental) #293

Merged
merged 3 commits into from
Oct 25, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1,053 changes: 773 additions & 280 deletions docs/examples/observed_space_examples.ipynb

Large diffs are not rendered by default.

7 changes: 5 additions & 2 deletions preliz/internal/parser.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,10 @@ def parse_arguments(lst, regex):
return result


def get_prior_pp_samples(fmodel, draws):
def get_prior_pp_samples(fmodel, draws, values=None):
if values is None:
values = []

match = match_return_variables(fmodel)
if match:
variables = [var.strip() for var in match.group(1).split(",")]
Expand All @@ -63,7 +66,7 @@ def get_prior_pp_samples(fmodel, draws):
pp_samples_ = []
prior_samples_ = {name: [] for name in variables[:-1]}
for _ in range(draws):
for name, value in zip(variables, fmodel()):
for name, value in zip(variables, fmodel(*values)):
if name == obs_rv:
pp_samples_.append(value)
else:
Expand Down
102 changes: 65 additions & 37 deletions preliz/internal/plot_helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -405,47 +405,51 @@ def looper(*args, **kwargs):
_, ax = plt.subplots()
ax.set_xlim(x_min, x_max, auto=auto)

alpha = max(0.01, 1 - iterations * 0.009)

if kind_plot == "hist":
if results[0].dtype.kind == "i":
bins = np.arange(np.min(results), np.max(results) + 1.5) - 0.5
if len(bins) < 30:
ax.set_xticks(bins + 0.5)
else:
bins = "auto"
ax.hist(
results,
alpha=alpha,
density=True,
color=["C0"] * iterations,
bins=bins,
histtype="step",
)
ax.hist(
np.concatenate(results),
density=True,
bins=bins,
color="k",
ls="--",
histtype="step",
)
elif kind_plot == "kde":
for result in results:
plt.plot(*_kde_linear(result, grid_len=100), "C0", alpha=alpha)
plt.plot(*_kde_linear(np.concatenate(results), grid_len=100), "k--")
elif kind_plot == "ecdf":
plt.plot(
np.sort(results, axis=1).T,
np.linspace(0, 1, len(results[0]), endpoint=False),
color="C0",
)
a = np.concatenate(results)
plt.plot(np.sort(a), np.linspace(0, 1, len(a), endpoint=False), "k--")
plot_repr(results, kind_plot, iterations, ax)

return looper


def plot_repr(results, kind_plot, iterations, ax):
alpha = max(0.01, 1 - iterations * 0.009)

if kind_plot == "hist":
if results[0].dtype.kind == "i":
bins = np.arange(np.min(results), np.max(results) + 1.5) - 0.5
if len(bins) < 30:
ax.set_xticks(bins + 0.5)
else:
bins = "auto"
ax.hist(
results,
alpha=alpha,
density=True,
color=["0.5"] * iterations,
bins=bins,
histtype="step",
)
ax.hist(
np.concatenate(results),
density=True,
bins=bins,
color="k",
ls="--",
histtype="step",
)
elif kind_plot == "kde":
for result in results:
ax.plot(*_kde_linear(result, grid_len=100), "0.5", alpha=alpha)
ax.plot(*_kde_linear(np.concatenate(results), grid_len=100), "k--")
elif kind_plot == "ecdf":
ax.plot(
np.sort(results, axis=1).T,
np.linspace(0, 1, len(results[0]), endpoint=False),
color="0.5",
)
a = np.concatenate(results)
ax.plot(np.sort(a), np.linspace(0, 1, len(a), endpoint=False), "k--")


def plot_pp_samples(pp_samples, pp_samples_idxs, references, kind="pdf", sharex=True, fig=None):
row_colum = int(np.ceil(len(pp_samples_idxs) ** 0.5))

Expand Down Expand Up @@ -576,3 +580,27 @@ def representations(fitted_dist, kind_plot, ax):
elif kind_plot == "ppf":
fitted_dist.plot_ppf(pointinterval=True, legend="title", ax=ax)
ax.set_xlim(-0.01, 1)


def create_figure(figsize):
"""
Initialize a matplotlib figure with one subplot
"""
fig, axes = plt.subplots(1, 1, figsize=figsize, constrained_layout=True)
axes.set_yticks([])
fig.canvas.header_visible = False
fig.canvas.footer_visible = False
fig.canvas.toolbar_position = "right"

return fig, axes


def reset_dist_panel(ax, yticks):
"""
Clean the distribution subplot
"""
ax.cla()
if yticks:
ax.set_yticks([])
ax.relim()
ax.autoscale_view()
70 changes: 70 additions & 0 deletions preliz/internal/predictive_helper.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
from sys import modules

import numpy as np


from .plot_helper import (
repr_to_matplotlib,
)

from ..unidimensional import mle


def back_fitting(model, subset, new_families=True):
"""
Use MLE to fit a subset of the prior samples to the marginal prior distributions
"""
string = "Your selection is consistent with the priors (original families):\n"

for name, dist in model.items():
dist._fit_mle(subset[name])
string += f"{name} = {repr_to_matplotlib(dist)}\n"

if new_families:
string += "\nYour selection is consistent with the priors (new families):\n"

exclude, distributions = get_distributions()
for name, dist in model.items():
if dist.__class__.__name__ in exclude:
dist._fit_mle(subset[name])
else:
idx, _ = mle(distributions, subset[name], plot=False)
dist = distributions[idx[0]]
string += f"{name} = {repr_to_matplotlib(dist)}\n"

return string, np.concatenate([dist.params for dist in model.values()])


def get_distributions():
exclude = [
"Beta",
"BetaScaled",
"Triangular",
"TruncatedNormal",
"Uniform",
"VonMises",
"Categorical",
"DiscreteUniform",
"HyperGeometric",
"zeroInflatedBinomial",
"ZeroInflatedNegativeBinomial",
"ZeroInflatedPoisson",
"MvNormal",
]
all_distributions = modules["preliz.distributions"].__all__
distributions = []
for a_dist in all_distributions:
dist = getattr(modules["preliz.distributions"], a_dist)()
if dist.__class__.__name__ not in exclude:
distributions.append(dist)
return exclude, distributions


def select_prior_samples(selected, prior_samples, model):
"""
Given a selected set of prior predictive samples pick the corresponding
prior samples.
"""
subsample = {rv: prior_samples[rv][selected] for rv in model.keys()}

return subsample
3 changes: 2 additions & 1 deletion preliz/predictive/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
from .ppa import ppa
from .predictive_explorer import predictive_explorer
from .predictive_finder import predictive_finder


__all__ = ["ppa", "predictive_explorer"]
__all__ = ["ppa", "predictive_explorer", "predictive_finder"]
69 changes: 3 additions & 66 deletions preliz/predictive/ppa.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@

import logging
from random import shuffle
from sys import modules

try:
import ipywidgets as widgets
Expand All @@ -17,12 +16,11 @@
check_inside_notebook,
plot_pp_samples,
plot_pp_mean,
repr_to_matplotlib,
)
from ..internal.parser import inspect_source, parse_function_for_ppa, get_prior_pp_samples
from ..internal.predictive_helper import back_fitting, select_prior_samples
from ..distributions.continuous import Normal
from ..distributions.distributions import Distribution
from ..unidimensional import mle

_log = logging.getLogger("preliz")

Expand All @@ -33,12 +31,11 @@ def ppa(
"""
Prior predictive check assistant.

This is experimental
This is an experimental method under development, use with caution.

Parameters
----------
model : PreliZ model
Model associated to ``idata``.
draws : int
Number of draws from the prior and prior predictive distribution
summary : str
Expand Down Expand Up @@ -176,7 +173,7 @@ def on_return_prior(fig, selected, model):
if len(selected) > 4:
subsample = select_prior_samples(selected, prior_samples, model)

string = back_fitting(model, subsample)
string, _ = back_fitting(model, subsample)

fig.clf()
plt.text(0.05, 0.5, string, fontsize=14)
Expand Down Expand Up @@ -412,63 +409,3 @@ def collect_more_samples(
return selected, shown
else:
return selected, shown


def select_prior_samples(selected, prior_samples, model):
"""
Given a selected set of prior predictive samples pick the corresponding
prior samples.
"""
subsample = {rv: prior_samples[rv][selected] for rv in model.keys()}

return subsample


def back_fitting(model, subset, new_families=True):
"""
Use MLE to fit a subset of the prior samples to the marginal prior distributions
"""
string = "Your selection is consistent with the priors (original families):\n"

for name, dist in model.items():
dist._fit_mle(subset[name])
string += f"{name} = {repr_to_matplotlib(dist)}\n"

if new_families:
string += "\nYour selection is consistent with the priors (new families):\n"

exclude, distributions = get_distributions()
for name, dist in model.items():
if dist.__class__.__name__ in exclude:
dist._fit_mle(subset[name])
else:
idx, _ = mle(distributions, subset[name], plot=False)
dist = distributions[idx[0]]
string += f"{name} = {repr_to_matplotlib(dist)}\n"

return string


def get_distributions():
exclude = [
"Beta",
"BetaScaled",
"Triangular",
"TruncatedNormal",
"Uniform",
"VonMises",
"Categorical",
"DiscreteUniform",
"HyperGeometric",
"zeroInflatedBinomial",
"ZeroInflatedNegativeBinomial",
"ZeroInflatedPoisson",
"MvNormal",
]
all_distributions = modules["preliz.distributions"].__all__
distributions = []
for a_dist in all_distributions:
dist = getattr(modules["preliz.distributions"], a_dist)()
if dist.__class__.__name__ not in exclude:
distributions.append(dist)
return exclude, distributions
Loading
Loading