Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Use systematic resampling for predictive finder #297

Merged
merged 2 commits into from
Nov 6, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .pylintrc
Original file line number Diff line number Diff line change
Expand Up @@ -231,6 +231,7 @@ function-naming-style=snake_case
good-names=a,
b,
d,
i,
n,
k,
p,
Expand Down
108 changes: 79 additions & 29 deletions preliz/predictive/predictive_finder.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@
except ImportError:
pass


from ..internal.plot_helper import create_figure, check_inside_notebook, plot_repr, reset_dist_panel
from ..internal.parser import inspect_source, parse_function_for_ppa, get_prior_pp_samples
from ..internal.predictive_helper import back_fitting, select_prior_samples
Expand All @@ -34,7 +33,7 @@ def predictive_finder(fmodel, target, draws=100, steps=5, figsize=None):
about the observed random variable. To obtain a target distribution you can use
other function from Preliz including `roulette`, `quartile_int`, `maxent`, etc.
draws : int
Number of draws from the prior and prior predictive distribution
Number of draws from the prior and prior predictive distribution. Defaults to 100
step : int
Number of steps to find the best match. Each step will use the previous match as
initial guess. If your initial prior predictive distribution is far from the target
Expand All @@ -55,12 +54,9 @@ def predictive_finder(fmodel, target, draws=100, steps=5, figsize=None):

button_carry_on, button_return_prior, w_repr = get_widgets()

pp_samples, _, obs_rv = get_prior_pp_samples(fmodel, draws)

source, _ = inspect_source(fmodel)
model = parse_function_for_ppa(source, obs_rv)
match_distribution = MatchDistribution(fig, fmodel, target, draws, steps, ax_fit)

plot_pp_samples(pp_samples, draws, target, w_repr.value, fig, ax_fit)
plot_pp_samples(match_distribution.pp_samples, draws, target, w_repr.value, fig, ax_fit)
fig.suptitle(
"This is your target distribution\n and a sample from the prior predictive distribution"
)
Expand All @@ -71,14 +67,10 @@ def predictive_finder(fmodel, target, draws=100, steps=5, figsize=None):

def kind_(_):
kind = w_repr.value
plot_pp_samples(pp_samples, draws, target, kind, fig, ax_fit)
plot_pp_samples(match_distribution.pp_samples, draws, target, kind, fig, ax_fit)

w_repr.observe(kind_, names=["value"])

match_distribution = MatchDistribution(
fig, w_repr.value, fmodel, model, target, draws, steps, ax_fit
)

def on_return_prior_(_):
on_return_prior(fig, ax_fit)

Expand All @@ -98,32 +90,32 @@ def on_return_prior(fig, ax_fit):
fig.canvas.draw()

button_return_prior.on_click(on_return_prior_)
button_carry_on.on_click(lambda event: match_distribution())
button_carry_on.on_click(lambda event: match_distribution(w_repr.value))

fig.canvas.mpl_connect("button_release_event", lambda event: match_distribution())
fig.canvas.mpl_connect(
"button_release_event", lambda event: match_distribution(w_repr.value)
)

controls = widgets.VBox([button_carry_on, button_return_prior])

display(widgets.HBox([controls, w_repr])) # pylint:disable=undefined-variable
display(widgets.HBox([controls, w_repr, output])) # pylint:disable=undefined-variable


class MatchDistribution: # pylint:disable=too-many-instance-attributes
def __init__(self, fig, kind_plot, fmodel, model, target, draws, steps, ax):
def __init__(self, fig, fmodel, target, draws, steps, ax):
self.fig = fig
self.kind_plot = kind_plot
self.fmodel = fmodel
self.model = model
self.target = target
self.target_octiles = target.ppf([0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875])
self.target_octiles = self.target.ppf([0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875])
self.draws = draws
self.steps = steps
self.ax = ax

self.pp_samples = None
self.pp_samples, _, obs_rv = get_prior_pp_samples(self.fmodel, self.draws)
self.model = parse_function_for_ppa(inspect_source(self.fmodel)[0], obs_rv)
self.values = None
self.string = None

def __call__(self):
def __call__(self, kind_plot):
self.fig.texts = []

for _ in range(self.steps):
Expand All @@ -138,23 +130,37 @@ def __call__(self):
self.pp_samples = [self.fmodel(*self.values)[-1] for _ in range(self.draws)]

reset_dist_panel(self.ax, True)
plot_repr(self.pp_samples, self.kind_plot, self.draws, self.ax)
plot_repr(self.pp_samples, kind_plot, self.draws, self.ax)

if self.kind_plot == "ecdf":
if kind_plot == "ecdf":
self.target.plot_cdf(color="C0", legend=False, ax=self.ax)

if self.kind_plot in ["kde", "hist"]:
if kind_plot in ["kde", "hist"]:
self.target.plot_pdf(color="C0", legend=False, ax=self.ax)

self.fig.canvas.draw()


def select(prior_sample, pp_sample, draws, target, model):
quants = np.stack(
def select(prior_sample, pp_sample, draws, target_octiles, model):
pp_octiles = np.stack(
[np.quantile(sample, [0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875]) for sample in pp_sample]
)
w_un = 1 / (np.mean((target - quants) ** 2, 1) ** 0.5)
selected = np.random.choice(range(0, draws), p=w_un / w_un.sum(), size=draws, replace=True)
pp_octiles_min = pp_octiles.min()
pp_octiles_max = pp_octiles.max()
target_octiles_min = target_octiles.min()
target_octiles_max = target_octiles.max()
# target and pp_samples are not overlapping
if pp_octiles_max < target_octiles_min or pp_octiles_min > target_octiles_max:
prior_sample = {key: value**2 for key, value in prior_sample.items()}
selected = range(draws)
# target is wider than pp_samples
elif pp_octiles_max < target_octiles_max and pp_octiles_min > target_octiles_min:
factor = (target_octiles_max - target_octiles_min) / (pp_octiles_max - pp_octiles_min)
prior_sample = {key: value * factor for key, value in prior_sample.items()}
selected = range(draws)
else:
w_un = 1 / (np.mean((target_octiles - pp_octiles) ** 2, 1) ** 0.5)
selected = systematic(w_un / w_un.sum())

values_to_fit = select_prior_samples(selected, prior_sample, model)

Expand Down Expand Up @@ -191,3 +197,47 @@ def get_widgets():
)

return button_carry_on, button_return_prior, w_repr


def systematic(normalized_weights):
"""
Systematic resampling.

Return indices in the range 0, ..., len(normalized_weights)

Note: adapted from https://github.com/nchopin/particles
"""
lnw = len(normalized_weights)
single_uniform = (np.random.random() + np.arange(lnw)) / lnw
return inverse_cdf(single_uniform, normalized_weights)


def inverse_cdf(single_uniform, normalized_weights):
"""
Inverse CDF algorithm for a finite distribution.

Parameters
----------
single_uniform: npt.NDArray[np.float_]
Ordered points in [0,1]

normalized_weights: npt.NDArray[np.float_])
Normalized weights

Returns
-------
new_indices: ndarray
a vector of indices in range 0, ..., len(normalized_weights)

Note: adapted from https://github.com/nchopin/particles
"""
idx = 0
a_weight = normalized_weights[0]
sul = len(single_uniform)
new_indices = np.empty(sul, dtype=np.int64)
for i in range(sul):
while single_uniform[i] > a_weight:
idx += 1
a_weight += normalized_weights[idx]
new_indices[i] = idx
return new_indices
Loading