-
Notifications
You must be signed in to change notification settings - Fork 1
autoproc_depend.py
- findcals - Locates calibration files.
- write_fits - Creates a FITS file.
-
findsexobj - Find
sextractorobjects with optional inputs. Estimates seeing from stars found. - calc_zpt - Find zeropoint using robust scatter.
- robust_scat - Calculate robust scatter and set the weight of those above this limit to 0.
- identify_matches - Use a kd-tree (3d) to match two lists of stars, using full spherical coordinate distances.
findcals(pipevar, file_format_str)
Locates calibration files of a specified type. Files must be in pipevar['caldir'], pipevar['datadir'], or pipevar['imworkingdir'].
-
pipevar{dict}: Input pipeline parameters. -
file_format_str{str}: String designating the type of calibration (bias*.fits, dark*.fits, flat*.fits).
write_fits(filename, data, header):
Creates a FITS file with the specified parameters.
-
filename{str}: Name of file being created. -
data{list}: Data of FITS file. -
header{list}: Header information of FITS file.
<> findsexobj(file, sigma, pipevar, [masksfx=None, zeropt=25.0, maptype='MAP_WEIGHT', wtimage=None, fwhm=1.5, pix=0.3787, aperture=5.0, elong_cut=1.5, quite=0])
Finds sextractor objects with optional inputs. Estimates seeing from stars found.
-
file{str}: Absolute path to FITS file to runsextractoron. -
sigma{float}: Detection threshold and analysis threshold forsextractor. -
pipevar{dict}: Input pipeline parameters. -
masksfx{str, optional}: Identifier forsextractorCHECKIMAGE_NAME. -
zeropt{float, optional}: Input value forsextractorMAG_ZEROPOINT. -
wtimage{str, optional}: Absolute file for input forsextractorWEIGHT_IMAGE. -
fwhm{float, optional}: Input value forsextractorSEEING_FWHM. -
pix{float, optional}: Input value forsextractorPIXEL_SCALE. -
aperture{float, optional}: Input value forsextractorPHOT_APERTURES. -
elong_cut{float, optional}: Cutoff limit forFWHMcalculation of elongation to eliminate non-stars. -
quiet{bool, optional}: Disable output fromsextractor.
See autoproc_steps.py (autopipestack) at line 745, line 935 and line 944.
<> calc_zpt(catmag, obsmag, wts, [sigma=3.0, plotter=None])
Find zeropoint using robust scatter.
-
catmag{list}: 2d array with catalog magnitudescatmag[nobs,nstar]. -
obsmag{list}: 2d array with catalog magnitudesobsmag[nobs,nstar]. -
wts{list}: 2d array with weightswts[nobs,nstar]. -
sigma{float, optional}: Sigma value for how far values can be from robust scatter value. -
plotter{str, optional}: Absolute path to save zeropoint plot.
-
z2- Zeropoint correction. -
scats- Robust scatter of each observation. -
rmss- Standard deviation (without bad weight points) of each observation.
See autoproc_steps.py (autopipestack) at line 844, and line 1039.
<> robust_scat(diff, wts, nobs, nstars, sigma)
Calculate robust scatter and set the weight of those above this limit to 0.
-
diff{list}: Values to calculate robust scatter over. -
wts{list}: Weights (0 is bad). -
nobs{int}: Number of observations to iterate over. -
nstars{int, optional}: Number of stars to iterate over. -
sigma{float, optional}: Sigma*robust scatter that is acceptable.
-
scats- robust scatter of each observation. -
rmss- standard deviation (without bad weight points) of each observation.
See autoproc_depend.py (calc_zpt) at line 829.
<> identify_matches(queried_stars, found_stars, [match_radius=3.0])
Use a kd-tree (3d) to match two lists of stars, using full spherical coordinate distances.
-
queried_stars{list}: Numpy arrays of[ [ra,dec],[ra,dec], ... ](all in decimal degrees). -
found_stars{list}: Numpy arrays of[ [ra,dec],[ra,dec], ... ](all in decimal degrees). -
match_radius{float, optional}: Max distance (in arcseconds) allowed to identify a match between two stars.
See autoproc_steps.py (autopipestack) at line 790, and line 988.