The Self-Assembling-Manifold (SAM) algorithm.
numpy
scipy
pandas
scikit-learn
umap-learn
numba
anndata
harmony
-
Interactive GUI (Jupyter notebooks)
plotly==4.0.0
ipythonwidgets
jupyter
colorlover
ipyevents
-
Plots
matplotlib
-
Clustering
louvain
leidenalg
hdbscan
cython
-
scanpy
Build the Docker image with:
git clone https://github.com/atarashansky/self-assembling-manifold.git
cd Docker
bash build_image.sh
Run the Docker image with:
bash run_image.sh
It will ask you to provide the image name, container name, port to run the Jupyter notebook server on, and the path to a directory that will be mounted onto the Docker container's file system.
SAM requires python>=3.7. Python can be installed using Anaconda.
Download Anaconda from here: https://www.anaconda.com/download/
Create and activate a new environment with python3.7 as follows:
conda create -n environment_name python=3.7
conda activate environment_name
Having activated the environment, SAM can be downloaded from the PyPI repository using pip or, for the development version, downloaded from the github directly.
PIP install:
pip install sam-algorithm
Development version install:
git clone https://github.com/atarashansky/self-assembling-manifold.git
cd self-assembling-manifold
python setup.py install
For plotting, install matplotlib
:
pip install matplotlib
For interactive data exploration (in the SAMGUI.py
module), jupyter
, ipythonwidgets
, colorlover
, ipyevents
, and plotly
are required. Install them in the previously made environment like so:
conda install -c conda-forge -c plotly jupyter ipywidgets plotly=4.0.0 colorlover ipyevents
If you use Jupyter Notebooks, these steps are not needed. If you would like to be able to run SAMGUI in JupyterLab, please do the following:
First install nodejs with:
conda install nodejs
To enable ipythonwidgets in Jupyter lab, please run the following:
jupyter labextension install @jupyter-widgets/[email protected] --no-build
jupyter labextension install [email protected] --no-build
jupyter labextension install [email protected] --no-build
jupyter lab build
SAMGUI should now work in JupyterLab.
The SAM GUI interface can be run in Jupyer notebooks with the following:
from samalg.gui import SAMGUI
sam_gui = SAMGUI(sam) # sam is your SAM object
sam_gui.SamPlot
Please see the plotting tutorial for more information about the GUI interface.
There are a number of different ways to load data into the SAM object.
from samalg import SAM #import SAM
sam=SAM(counts=(matrix,geneIDs,cellIDs))
sam.preprocess_data() # log transforms and filters the data
sam.run() #run with default parameters
sam.scatter()
from samalg import SAM #import SAM
sam=SAM(counts=dataframe)
sam.preprocess_data() # log transforms and filters the data
sam.run() #run with default parameters
sam.scatter()
from samalg import SAM #import SAM
sam=SAM(counts=adata)
sam.preprocess_data() # log transforms and filters the data
sam.run() #run with default parameters
sam.scatter()
from samalg import SAM #import SAM
sam=SAM() #initialize SAM object
sam.load_data('/path/to/expression_data_file.csv') #load data from a csv file
#sam.load_data('/path/to/expression_data_file.txt', sep='\t') #load data from a txt file with tab delimiters
sam.preprocess_data() # log transforms and filters the data
sam.load_annotations('/path/to/annotations_file.csv')
sam.run()
sam.scatter()
If loading tabular data (e.g. from a csv
), load_data
by default saves the sparse data structure to a h5ad
file in the same location as the tabular file for faster loading in subsequent analyses. This file can be loaded as:
from samalg import SAM #import SAM
sam=SAM() #initialize SAM object
sam.load_data('/path/to/h5ad_file.h5ad') #load data from a h5ad file
sam.preprocess_data() # log transforms and filters the data
sam.run()
sam.scatter()
If you wish to save the SAM outputs and raw and filtered data, you can write sam.adata
to a h5ad
file as follows:
sam.save_anndata(filename)
.
You can load this data back with sam.load_data
:
sam.load_data(filename)
If using the SAM algorithm, please cite the following eLife paper: https://elifesciences.org/articles/48994
Tarashansky, A. J. et al. Self-assembling manifolds in single-cell RNA sequencing data. eLife 8, e48994 (2019).
As always, please submit a new issue if you would like to see any functionalities / convenience functions / etc added.