Skip to content

atomistic-machine-learning/dtnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Tensor Neural Networks

The deep tensor neural network (DTNN) enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems.

Requirements:

  • python 3.4
  • ASE
  • numpy
  • tensorflow (>=1.0)

See the examples folder for scripts for training and evaluation of a DTNN model for predicting the total energy (U0) for the GDB-9 data set. The data set will be downloaded and converted automatically.

Basic usage:

python train_dtnn_gdb9.py -h

If you use deep tensor neural networks in your research, please cite:

K.T. Schütt. F. Arbabzadah. S. Chmiela, K.-R. Müller, A. Tkatchenko.
Quantum-chemical insights from deep tensor neural networks.

Nature Communications 8. 13890 (2017)
doi: 10.1038/ncomms13890

Releases

No releases published

Packages

No packages published

Languages