-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathvisualize.py
409 lines (380 loc) · 24.5 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import json
import gzip
import os
import numpy as np
import cv2
import pathlib
import random
import laspy
import matplotlib.cm as cm
from tqdm import trange
from utils import get_image_point, point_in_canvas_wh, edges, world_to_ego, get_forward_vector, calculate_cube_vertices, draw_dashed_line, vector_angle, get_weather_id
def visualize_data(file_path, map_path, vis_bbox=True, vis_top_down=True, vis_road=True, vis_lidar_bev=True, vis_lidar_to_back_image=True, vis_lidar_to_front_image=True, vis_lidar_to_front_left_image=True):
print(f'file_path={file_path}')
print(f'map_path={map_path}')
save_path = pathlib.Path(file_path.replace('v0','v0-vis'))
(save_path / 'camera' / 'rgb_front_3d_bbox').mkdir(parents=True, exist_ok=True)
(save_path / 'camera' / 'rgb_front_landmark').mkdir(parents=True, exist_ok=True)
(save_path / 'camera' / 'rgb_front_left_3d_bbox').mkdir(parents=True, exist_ok=True)
(save_path / 'camera' / 'rgb_front_right_3d_bbox').mkdir(parents=True, exist_ok=True)
(save_path / 'camera' / 'rgb_back_3d_bbox').mkdir(parents=True, exist_ok=True)
(save_path / 'camera' / 'rgb_back_left_3d_bbox').mkdir(parents=True, exist_ok=True)
(save_path / 'camera' / 'rgb_back_right_3d_bbox').mkdir(parents=True, exist_ok=True)
(save_path / 'camera' / 'rgb_top_down_3d_bbox').mkdir(parents=True, exist_ok=True)
(save_path / 'lidar' / 'bev').mkdir(parents=True, exist_ok=True)
(save_path / 'lidar' / 'front').mkdir(parents=True, exist_ok=True)
(save_path / 'lidar' / 'front_left').mkdir(parents=True, exist_ok=True)
(save_path / 'lidar' / 'back').mkdir(parents=True, exist_ok=True)
cam_map = {
'CAM_FRONT': 'rgb_front',
'CAM_FRONT_LEFT': 'rgb_front_left',
'CAM_FRONT_RIGHT': 'rgb_front_right',
'CAM_BACK': 'rgb_back',
'CAM_BACK_LEFT': 'rgb_back_left',
'CAM_BACK_RIGHT': 'rgb_back_right',
'TOP_DOWN': 'rgb_top_down'
}
folder_path = os.path.join(file_path, 'anno')
file_count = len([name for name in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, name))])
map_info = dict(np.load(map_path, allow_pickle=True)['arr'])
for step in trange(file_count):
with gzip.open(os.path.join(file_path, f'anno/{step:05}.json.gz'), 'rt', encoding='utf-8') as gz_file:
anno = json.load(gz_file)
weather_id = get_weather_id(anno['weather'])
bounding_boxes = anno['bounding_boxes']
sensors_anno = anno['sensors']
# ========================== bbox ==========================
if vis_bbox:
for key in ['CAM_FRONT','CAM_FRONT_LEFT','CAM_FRONT_RIGHT','CAM_BACK', 'CAM_BACK_LEFT', 'CAM_BACK_RIGHT']:
K = sensors_anno[key]['intrinsic']
world2cam = sensors_anno[key]['world2cam']
visulize_img = cv2.imread(os.path.join(file_path, f'camera/{cam_map[key]}/{step:05}.jpg'))
for npc in bounding_boxes:
if npc['class'] == 'ego_vehicle': continue
if npc['distance'] > 75: continue
if abs(npc['location'][2] - anno['bounding_boxes'][0]['location'][2]) > 10: continue # car in sky and underground
if 'vehicle' in npc['class']: # vehicle
forward_vec = get_forward_vector(sensors_anno[key]['rotation'][2])
ray = np.array(npc['location']) - np.array(sensors_anno[key]['location'])
color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
if forward_vec.dot(ray) > 1 and vector_angle(forward_vec, ray)<45:
verts = np.array(npc['world_cord'])
for edge in edges:
p1, p1_depth = get_image_point(verts[edge[0]], K, world2cam)
p2, p2_depth = get_image_point(verts[edge[1]], K, world2cam)
draw_dashed_line(visulize_img, (int(p1[0]),int(p1[1])), (int(p2[0]),int(p2[1])), color, 2)
cv2.putText(visulize_img, npc['class']+npc['id'], (int(p1[0])+2,int(p1[1])+2), cv2.FONT_HERSHEY_COMPLEX, 0.5, color, 1)
else: # sign, light, pedestrians
if npc['class'] == 'traffic_sign':
npc['extent'][1] = 0.5 # traffic_sign origin y is too small
forward_vec = get_forward_vector(sensors_anno[key]['rotation'][2])
ray = np.array(npc['location']) - np.array(sensors_anno[key]['location'])
if 'affects_ego' in npc.keys() and str(npc['affects_ego']) == 'True':
color = (0, 0, 255)
else:
color = (255, 255, 255)
if forward_vec.dot(ray) > 1 and vector_angle(forward_vec, ray)<45:
if 'world_cord' in npc.keys():
if 'dirtdebris' in npc['type_id']:
local_verts = calculate_cube_vertices(npc['bbx_loc'], [npc['extent'][1], npc['extent'][0], npc['extent'][2]])
verts = []
for l_v in local_verts:
g_v = np.dot(np.matrix(npc['world2sign']).I, [l_v[0], l_v[1], l_v[2],1])
verts.append(g_v.tolist()[0][:-1])
else:
verts = np.array(npc['world_cord'])
else:
verts = calculate_cube_vertices(npc['center'], npc['extent'])
for edge in edges:
p1, p1_depth = get_image_point(verts[edge[0]], K, world2cam)
p2, p2_depth = get_image_point(verts[edge[1]], K, world2cam)
draw_dashed_line(visulize_img, (int(p1[0]),int(p1[1])), (int(p2[0]),int(p2[1])), color, 2)
if 'affects_ego' in npc.keys():
cv2.putText(visulize_img, npc['class'], (int(p1[0])+2,int(p1[1])+2), cv2.FONT_HERSHEY_COMPLEX, 0.5, color, 1)
else:
cv2.putText(visulize_img, npc['class'], (int(p1[0])+2,int(p1[1])+2), cv2.FONT_HERSHEY_COMPLEX, 0.5, color, 1)
cv2.imwrite(os.path.join(save_path, f'camera/{cam_map[key]}_3d_bbox/{step:05}.jpg'), visulize_img)
if vis_top_down:
for key in ['TOP_DOWN']:
K = sensors_anno[key]['intrinsic']
world2cam = sensors_anno[key]['world2cam']
visulize_img = cv2.imread(os.path.join(file_path, f'camera/{cam_map[key]}/{step:05}.jpg'))
road_points = map_info[anno['bounding_boxes'][0]['road_id']]
# draw lane
for r_p in road_points[anno['bounding_boxes'][0]['lane_id']]:
road_point = r_p['Points']
road_type = r_p['Type']
road_color = r_p['Color']
road_topology = r_p['Topology']
for point in road_point:
point = np.array([point[0][0], point[0][1], point[0][2], 1])
point_camera = np.dot(world2cam, point)
point_camera = [point_camera[1], -point_camera[2], point_camera[0]]
depth = point_camera[2]
point_img = np.dot(K, point_camera)
if depth >0:
point_img[0] /= point_img[2]
point_img[1] /= point_img[2]
point_img = point_img[0:2]
if point_in_canvas_wh(point_img):
if road_color == 'White':
cv2.circle(visulize_img, (int(point_img[0]), int(point_img[1])), radius=1, color=(255, 255, 255), thickness=-1)
if road_type == 'Center':
cv2.circle(visulize_img, (int(point_img[0]), int(point_img[1])), radius=1, color=(0, 255, 0), thickness=-1)
else:
cv2.circle(visulize_img, (int(point_img[0]), int(point_img[1])), radius=1, color=(0, 255, 255), thickness=-1)
# draw vehicle
for npc in bounding_boxes:
if 'vehicle' in npc['class']:
if abs(npc['location'][2] - anno['bounding_boxes'][0]['location'][2]) > 10: continue # car in sky and underground
if npc['class'] == 'ego_vehicle':
color = (255, 255, 255, 255)
else:
color = (255, 0, 0, 255)
verts = np.array(npc['world_cord'])
p1, p1_depth = get_image_point(verts[0], K, world2cam)
p2, p2_depth = get_image_point(verts[2], K, world2cam)
p3, p3_depth = get_image_point(verts[4], K, world2cam)
p4, p4_depth = get_image_point(verts[6], K, world2cam)
points = np.array([p1, p2, p4, p3])
height, width = visulize_img.shape[:2]
blk = np.zeros((height, width, 4), np.uint8)
cv2.fillConvexPoly(blk, np.round(points).astype(np.int32), color)
if npc['class'] == 'ego_vehicle':
visulize_img = cv2.addWeighted(visulize_img, 1.0, blk[:,:,:3], 1, 1)
else:
visulize_img = cv2.addWeighted(visulize_img, 1.0, blk[:,:,:3], 0.25, 1)
if npc['class'] == 'ego_vehicle':
cv2.putText(visulize_img, npc['class'], (int(p1[0])+2,int(p1[1])+2), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0,0,0), 1)
else:
cv2.putText(visulize_img, npc['class'], (int(p1[0])+2,int(p1[1])+2), cv2.FONT_HERSHEY_COMPLEX, 0.5, color, 1)
# draw sign
for npc in bounding_boxes:
if abs(npc['location'][2] - anno['bounding_boxes'][0]['location'][2]) > 10: continue # car in sky and underground
# traffic_sign
if 'traffic_sign' in npc['class']:
color = (0, 0, 255, 255)
if 'world_cord' in npc.keys():
verts = np.array(npc['world_cord'])
else:
verts = calculate_cube_vertices(npc['center'], npc['extent'])
p1, p1_depth = get_image_point(verts[0], K, world2cam)
p2, p2_depth = get_image_point(verts[2], K, world2cam)
p3, p3_depth = get_image_point(verts[4], K, world2cam)
p4, p4_depth = get_image_point(verts[6], K, world2cam)
points = np.array([p1, p2, p4, p3])
height, width = visulize_img.shape[:2]
blk = np.zeros((height, width, 4), np.uint8)
cv2.fillConvexPoly(blk, np.round(points).astype(np.int32), color)
visulize_img = cv2.addWeighted(visulize_img, 1.0, blk[:,:,:3], 0.25, 1)
cv2.putText(visulize_img, npc['class'], (int(p1[0])+2,int(p1[1])+2), cv2.FONT_HERSHEY_COMPLEX, 0.5, color, 1)
# traffic_light
if 'traffic_light' in npc['class']:
color = (255, 0, 0)
verts = calculate_cube_vertices(npc['center'], npc['extent'])
for edge in edges:
p1, p1_depth = get_image_point(verts[edge[0]], K, world2cam)
p2, p2_depth = get_image_point(verts[edge[1]], K, world2cam)
cv2.line(visulize_img, (int(p1[0]),int(p1[1])), (int(p2[0]),int(p2[1])), color, 2)
cv2.putText(visulize_img, 'traffic_light', (int(p1[0])+2,int(p1[1])+2), cv2.FONT_HERSHEY_COMPLEX, 0.5, color, 1)
cv2.imwrite(os.path.join(save_path, f'camera/{cam_map[key]}_3d_bbox/{step:05}.jpg'), visulize_img)
# ==========================================================
# ========================== road ==========================
if vis_road:
key = 'CAM_FRONT'
K = sensors_anno[key]['intrinsic']
world2cam = sensors_anno[key]['world2cam']
road_points = map_info[anno['bounding_boxes'][0]['road_id']]
road_seg = np.zeros((900, 1600, 3), dtype=np.uint8)
all_road_topology = set()
# draw current road
for r_p in road_points[anno['bounding_boxes'][0]['lane_id']]:
road_point = r_p['Points']
road_type = r_p['Type']
road_color = r_p['Color']
road_topology = r_p['Topology']
for r_t in road_topology:
all_road_topology.add(r_t)
for point in road_point:
point = np.array([point[0][0], point[0][1], point[0][2], 1])
point_camera = np.dot(world2cam, point)
point_camera = [point_camera[1], -point_camera[2], point_camera[0]]
depth = point_camera[2]
point_img = np.dot(K, point_camera)
if depth >0:
point_img[0] /= point_img[2]
point_img[1] /= point_img[2]
point_img = point_img[0:2]
if point_in_canvas_wh(point_img):
if road_color == 'White':
cv2.circle(road_seg, (int(point_img[0]), int(point_img[1])), radius=1, color=(255, 255, 255), thickness=-1)
if road_type == 'Center':
cv2.circle(road_seg, (int(point_img[0]), int(point_img[1])), radius=1, color=(0, 255, 0), thickness=-1)
else:
cv2.circle(road_seg, (int(point_img[0]), int(point_img[1])), radius=1, color=(0, 255, 255), thickness=-1)
# draw road topology
for r_t in all_road_topology:
road_points = map_info[r_t[0]][r_t[1]]
for r_p in road_points:
road_point = r_p['Points']
road_type = r_p['Type']
road_color = r_p['Color']
road_topology = r_p['Topology']
for point in road_point:
point = np.array([point[0][0], point[0][1], point[0][2], 1])
point_camera = np.dot(world2cam, point)
point_camera = [point_camera[1], -point_camera[2], point_camera[0]]
depth = point_camera[2]
point_img = np.dot(K, point_camera)
if depth >0:
point_img[0] /= point_img[2]
point_img[1] /= point_img[2]
point_img = point_img[0:2]
if point_in_canvas_wh(point_img):
if road_color == 'White':
cv2.circle(road_seg, (int(point_img[0]), int(point_img[1])), radius=1, color=(255, 255, 255), thickness=-1)
if road_type == 'Center':
cv2.circle(road_seg, (int(point_img[0]), int(point_img[1])), radius=1, color=(0, 255, 0), thickness=-1)
else:
cv2.circle(road_seg, (int(point_img[0]), int(point_img[1])), radius=1, color=(0, 255, 255), thickness=-1)
cv2.imwrite(os.path.join(save_path, f'camera/{cam_map[key]}_landmark/{step:05}.png'), road_seg)
# # ===========================================================
# ========================== lidar to bev =====================
if vis_lidar_bev:
lidar_path = os.path.join(file_path, f'lidar/{step:05}.laz')
lidars = laspy.read(lidar_path).xyz
lidar_image = np.zeros((900, 1600, 3), dtype=np.uint8)
header = laspy.LasHeader(point_format=0) # LARS point format used for storing
header.offsets = np.min(lidars, axis=0)
point_precision = 0.001
header.scales = np.array([point_precision, point_precision, point_precision])
point_record = laspy.ScaleAwarePointRecord.zeros(lidars.shape[0], header=header)
point_record.x = lidars[:, 0]
point_record.y = lidars[:, 1]
point_record.z = lidars[:, 2]
# (x, y,z) -> (y, -x, z), the x,y plane of the lidar system is different from that of the ego-car
point_record.x = lidars[:, 1]
point_record.y = - lidars[:, 0]
point_record.z = lidars[:, 2]
range_x = 85.0
range_y = 85.0
range_z = 85.0
# Normalized point cloud data
x_normalized = (point_record.x + range_x) / (2 * range_x)
y_normalized = (point_record.y + range_y) / (2 * range_y)
z_normalized = (point_record.z + range_z) / (2 * range_z)
# Convert normalized coordinates to image pixel index
x_pixels = x_normalized * (lidar_image.shape[1] - 1)
y_pixels = y_normalized * (lidar_image.shape[0] - 1)
for x, y, z in zip(x_pixels, y_pixels, z_normalized):
rgb_color = (255, 255, 255)
cv2.circle(lidar_image, (int(x), int(y)), radius=2, color=(int(rgb_color[0]), int(rgb_color[1]), int(rgb_color[2])), thickness=-1)
cv2.imwrite(os.path.join(save_path, f'lidar_bev/{step:05}.png'), lidar_image)
for npc in bounding_boxes:
if npc['class'] not in ['vehicle', 'ego_vehicle']: continue
if abs(npc['location'][2] - anno['bounding_boxes'][0]['location'][2]) > 10: continue # car in sky and underground
verts = calculate_cube_vertices(npc['center'], npc['extent'])
verts = np.array(npc['world_cord'])
# verts[:, 2] = verts[:, 2] - npc['extent'][2] # carla bbox need minus z
if npc['class'] == 'ego_vehicle':
color = (0, 255, 0)
else:
color = (0, 128, 255)
for edge in edges:
p1 = verts[edge[0]]
p1 = world_to_ego(p1, anno['bounding_boxes'][0]['world2ego'])
p1_x = (p1[0] + range_x) / (2 * range_x) * (lidar_image.shape[1] - 1)
p1_y = (p1[1] + range_y) / (2 * range_y) * (lidar_image.shape[0] - 1)
p2 = verts[edge[1]]
p2 = world_to_ego(p2, anno['bounding_boxes'][0]['world2ego'])
p2_x = (p2[0] + range_x) / (2 * range_x) * (lidar_image.shape[1] - 1)
p2_y = (p2[1] + range_y) / (2 * range_y) * (lidar_image.shape[0] - 1)
cv2.line(lidar_image, (int(p1_x), int(p1_y)), (int(p2_x), int(p2_y)), color, 2)
cv2.imwrite(os.path.join(save_path, f'lidar/bev/{step:05}.png'), lidar_image)
# ===========================================================
# ================ lidar to front image =====================
if vis_lidar_to_front_image:
key = 'CAM_FRONT'
K = sensors_anno[key]['intrinsic']
visulize_img = cv2.imread(os.path.join(file_path, f'camera/{cam_map[key]}/{step:05}.jpg'))
ego2cam = np.matrix(sensors_anno[key]['cam2ego']).I.tolist()
# lidar in ego coordinate
lidar_path = os.path.join(file_path, f'lidar/{step:05}.laz')
lidars = laspy.read(lidar_path).xyz
for lidar in lidars:
lidar = np.array([lidar[0], lidar[1], lidar[2], 1])
point_camera = np.dot(ego2cam, lidar)
point_camera = [point_camera[1], -point_camera[2], point_camera[0]]
depth = point_camera[2]
point_img = np.dot(K, point_camera)
if depth > 0:
point_img[0] /= point_img[2]
point_img[1] /= point_img[2]
point_img = point_img[0:2]
if point_in_canvas_wh(point_img):
color_scale = min(depth / 80, 1)
color = cm.rainbow(color_scale)
color = tuple([int(x*255) for x in color[:3]])
cv2.circle(visulize_img, (int(point_img[0]), int(point_img[1])), radius=2, color=color, thickness=-1)
cv2.imwrite(os.path.join(save_path, f'lidar/front/{step:05}_front.png'), visulize_img)
# ==========================================================
# ================ lidar to back image =====================
if vis_lidar_to_back_image:
key = 'CAM_BACK'
K = sensors_anno[key]['intrinsic']
visulize_img = cv2.imread(os.path.join(file_path, f'camera/{cam_map[key]}/{step:05}.jpg'))
ego2cam = np.matrix(sensors_anno[key]['cam2ego']).I.tolist()
# lidar in ego coordinate
lidar_path = os.path.join(file_path, f'lidar/{step:05}.laz')
lidars = laspy.read(lidar_path).xyz
for lidar in lidars:
lidar = np.array([lidar[0], lidar[1], lidar[2], 1])
point_camera = np.dot(ego2cam, lidar)
point_camera = [point_camera[1], -point_camera[2], point_camera[0]]
depth = point_camera[2]
point_img = np.dot(K, point_camera)
if depth > 0:
point_img[0] /= point_img[2]
point_img[1] /= point_img[2]
point_img = point_img[0:2]
if point_in_canvas_wh(point_img):
color_scale = min(depth / 80, 1)
color = cm.rainbow(color_scale)
color = tuple([int(x*255) for x in color[:3]])
cv2.circle(visulize_img, (int(point_img[0]), int(point_img[1])), radius=2, color=color, thickness=-1)
cv2.imwrite(os.path.join(save_path, f'lidar/back/{step:05}_back.png'), visulize_img)
# ===========================================================
# ================ lidar to fomr left image =====================
if vis_lidar_to_front_left_image:
key = 'CAM_FRONT_LEFT'
K = sensors_anno[key]['intrinsic']
visulize_img = cv2.imread(os.path.join(file_path, f'camera/{cam_map[key]}/{step:05}.jpg'))
ego2cam = np.matrix(sensors_anno[key]['cam2ego']).I.tolist()
# lidar in ego coordinate
lidar_path = os.path.join(file_path, f'lidar/{step:05}.laz')
lidars = laspy.read(lidar_path).xyz
for lidar in lidars:
lidar = np.array([lidar[0], lidar[1], lidar[2], 1])
point_camera = np.dot(ego2cam, lidar)
point_camera = [point_camera[1], -point_camera[2], point_camera[0]]
depth = point_camera[2]
point_img = np.dot(K, point_camera)
if depth > 0:
point_img[0] /= point_img[2]
point_img[1] /= point_img[2]
point_img = point_img[0:2]
if point_in_canvas_wh(point_img):
color_scale = min(depth / 80, 1)
color = cm.rainbow(color_scale)
color = tuple([int(x*255) for x in color[:3]])
cv2.circle(visulize_img, (int(point_img[0]), int(point_img[1])), radius=2, color=color, thickness=-1)
cv2.imwrite(os.path.join(save_path, f'lidar/front_left/{step:05}_front_left.png'), visulize_img)
# ===========================================================
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='argparse')
parser.add_argument('--file_path','-f', type=str)
parser.add_argument('--map_path','-m', type=str)
args = parser.parse_args()
map_path = f'./maps/Town{args.map_path}_HD_map.npz'
visualize_data(args.file_path, map_path, vis_bbox=True, vis_top_down=True, vis_road=True, vis_lidar_bev=True, vis_lidar_to_back_image=True, vis_lidar_to_front_image=True, vis_lidar_to_front_left_image=True)