-
Notifications
You must be signed in to change notification settings - Fork 23
/
leaderboard_evaluator_local.py
531 lines (424 loc) · 20.8 KB
/
leaderboard_evaluator_local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
#!/usr/bin/env python
# Copyright (c) 2018-2019 Intel Corporation.
# authors: German Ros ([email protected]), Felipe Codevilla ([email protected])
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
"""
CARLA Challenge Evaluator Routes
Provisional code to evaluate Autonomous Agents for the CARLA Autonomous Driving challenge
"""
from __future__ import print_function
import traceback
import argparse
from argparse import RawTextHelpFormatter
from datetime import datetime
import importlib
import os
import sys
import signal
import socket
import numpy as np
import torch
from srunner.scenariomanager.carla_data_provider import *
from srunner.scenariomanager.timer import GameTime
from srunner.scenariomanager.watchdog import Watchdog
from leaderboard.scenarios.scenario_manager_local import ScenarioManager
from leaderboard.scenarios.route_scenario import RouteScenario
from leaderboard.envs.sensor_interface import SensorConfigurationInvalid
from leaderboard.autoagents.agent_wrapper_local import AgentError, validate_sensor_configuration
from leaderboard.utils.statistics_manager_local import StatisticsManager, FAILURE_MESSAGES
from leaderboard.utils.route_indexer import RouteIndexer
import pathlib
sensors_to_icons = {
'sensor.camera.rgb': 'carla_camera',
'sensor.lidar.ray_cast': 'carla_lidar',
'sensor.other.radar': 'carla_radar',
'sensor.other.gnss': 'carla_gnss',
'sensor.other.imu': 'carla_imu',
'sensor.opendrive_map': 'carla_opendrive_map',
'sensor.speedometer': 'carla_speedometer',
'sensor.camera.semantic_segmentation': 'carla_camera', # for datagen
'sensor.camera.depth': 'carla_camera', # for datagen
}
class LeaderboardEvaluator(object):
"""
Main class of the Leaderboard. Everything is handled from here,
from parsing the given files, to preparing the simulation, to running the route.
"""
# Tunable parameters
client_timeout = 10.0 # in seconds
frame_rate = 20.0 # in Hz
def __init__(self, args, statistics_manager):
"""
Setup CARLA client and world
Setup ScenarioManager
"""
self.world = None
self.manager = None
self.sensors = None
self.sensors_initialized = False
self.sensor_icons = []
self.agent_instance = None
self.route_scenario = None
self.statistics_manager = statistics_manager
# This is the ROS1 bridge server instance. This is not encapsulated inside the ROS1 agent because the same
# instance is used on all the routes (i.e., the server is not restarted between routes). This is done
# to avoid reconnection issues between the server and the roslibpy client.
self._ros1_server = None
# Setup the simulation
self.client, self.client_timeout, self.traffic_manager, self.traffic_manager_port = self._setup_simulation(args)
# Load agent
module_name = os.path.basename(args.agent).split('.')[0]
sys.path.insert(0, os.path.dirname(args.agent))
self.module_agent = importlib.import_module(module_name)
# Create the ScenarioManager
self.manager = ScenarioManager(args.timeout, self.statistics_manager, args.debug)
# Time control for summary purposes
self._start_time = GameTime.get_time()
self._end_time = None
# Prepare the agent timer
self._agent_watchdog = None
signal.signal(signal.SIGINT, self._signal_handler)
self._client_timed_out = False
def _signal_handler(self, signum, frame):
"""
Terminate scenario ticking when receiving a signal interrupt.
Either the agent initialization watchdog is triggered, or the runtime one at scenario manager
"""
if self._agent_watchdog and not self._agent_watchdog.get_status():
raise RuntimeError("Timeout: Agent took longer than {}s to setup".format(self.client_timeout))
elif self.manager:
self.manager.signal_handler(signum, frame)
def __del__(self):
"""
Cleanup and delete actors, ScenarioManager and CARLA world
"""
if hasattr(self, 'manager') and self.manager:
del self.manager
if hasattr(self, 'world') and self.world:
del self.world
def _get_running_status(self):
"""
returns:
bool: False if watchdog exception occured, True otherwise
"""
if self._agent_watchdog:
return self._agent_watchdog.get_status()
return False
def _cleanup(self, results=None):
"""
Remove and destroy all actors
"""
CarlaDataProvider.cleanup()
if self._agent_watchdog:
self._agent_watchdog.stop()
try:
if self.agent_instance:
self.agent_instance.destroy(results)
del self.agent_instance
except Exception as e:
print("\n\033[91mFailed to stop the agent:")
print(f"\n{traceback.format_exc()}\033[0m")
if self.route_scenario:
self.route_scenario.remove_all_actors()
self.route_scenario = None
if self.statistics_manager:
self.statistics_manager.remove_scenario()
if self.manager:
self._client_timed_out = not self.manager.get_running_status()
self.manager.cleanup()
# Make sure no sensors are left streaming
alive_sensors = self.world.get_actors().filter('*sensor*')
for sensor in alive_sensors:
sensor.stop()
sensor.destroy()
def find_free_port(self, start_port=2_000, end_port=40_000):
for port in range(start_port, end_port + 1):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
try:
s.bind(('localhost', port))
return port
except OSError as e: # Address already in use or Address already in use (WinError)
pass
finally:
s.close()
return None
def _setup_simulation(self, args):
"""
Prepares the simulation by getting the client, and setting up the world and traffic manager settings
"""
client = carla.Client(args.host, args.port)
if args.timeout:
client_timeout = args.timeout
client.set_timeout(client_timeout)
settings = carla.WorldSettings(
synchronous_mode = True,
fixed_delta_seconds = 1.0 / self.frame_rate
)
client.get_world().apply_settings(settings)
traffic_manager_port = self.find_free_port()
traffic_manager = client.get_trafficmanager(traffic_manager_port)
traffic_manager.set_synchronous_mode(True)
traffic_manager.set_hybrid_physics_mode(True)
return client, client_timeout, traffic_manager, traffic_manager_port
def _reset_world_settings(self):
"""
Changes the modified world settings back to asynchronous
"""
# Has simulation failed?
if self.world and self.manager and not self._client_timed_out:
# Reset to asynchronous mode
self.world.tick() # TODO: Make sure all scenario actors have been destroyed
settings = self.world.get_settings()
settings.synchronous_mode = False
settings.fixed_delta_seconds = None
settings.deterministic_ragdolls = False
settings.spectator_as_ego = True
self.world.apply_settings(settings)
# Make the TM back to async
self.traffic_manager.set_synchronous_mode(False)
self.traffic_manager.set_hybrid_physics_mode(False)
def _load_and_wait_for_world(self, args, town):
"""
Load a new CARLA world without changing the settings and provide data to CarlaDataProvider
"""
self.world = self.client.load_world(town, reset_settings=False)
# Large Map settings are always reset, for some reason
settings = self.world.get_settings()
settings.tile_stream_distance = 650
settings.actor_active_distance = 650
self.world.apply_settings(settings)
self.world.reset_all_traffic_lights()
CarlaDataProvider.set_client(self.client)
CarlaDataProvider.set_traffic_manager_port(self.traffic_manager_port)
CarlaDataProvider.set_world(self.world)
CarlaDataProvider.set_random_seed(args.traffic_manager_seed)
# This must be here so that all route repetitions use the same 'unmodified' seed
self.traffic_manager.set_random_device_seed(args.traffic_manager_seed)
np.random.seed(args.traffic_manager_seed)
random.seed(args.traffic_manager_seed)
torch.manual_seed(args.traffic_manager_seed)
# Wait for the world to be ready
self.world.tick()
map_name = CarlaDataProvider.get_map().name.split("/")[-1]
if map_name != town:
raise Exception("The CARLA server uses the wrong map!"
" This scenario requires the use of map {}".format(town))
def _register_statistics(self, route_date_string, route_index, entry_status, crash_message=""):
"""
Computes and saves the route statistics
"""
print("\033[1m> Registering the route statistics\033[0m")
self.statistics_manager.save_entry_status(entry_status)
current_stats_record = self.statistics_manager.compute_route_statistics(
route_date_string, route_index, self.manager.scenario_duration_system, self.manager.scenario_duration_game, crash_message
)
return current_stats_record
def _load_and_run_scenario(self, args, config):
"""
Load and run the scenario given by config.
Depending on what code fails, the simulation will either stop the route and
continue from the next one, or report a crash and stop.
"""
crash_message = ""
entry_status = "Started"
print("\n\033[1m========= Preparing {} (repetition {}) =========\033[0m".format(config.name, config.repetition_index))
# Prepare the statistics of the route
route_name = f"{config.name}_rep{config.repetition_index}"
self.statistics_manager.create_route_data(route_name, config.index)
print("\033[1m> Loading the world\033[0m")
# Load the world and the scenario
try:
self._load_and_wait_for_world(args, config.town)
self.route_scenario = RouteScenario(world=self.world, config=config, debug_mode=args.debug)
self.statistics_manager.set_scenario(self.route_scenario)
except Exception:
# The scenario is wrong -> set the ejecution to crashed and stop
print("\n\033[91mThe scenario could not be loaded:")
print(f"\n{traceback.format_exc()}\033[0m")
entry_status, crash_message = FAILURE_MESSAGES["Simulation"]
self._register_statistics(config.index, entry_status, crash_message)
self._cleanup()
return True
print("\033[1m> Setting up the agent\033[0m")
# Set up the user's agent, and the timer to avoid freezing the simulation
try:
now = datetime.now()
# route_string = pathlib.Path(os.environ.get('ROUTES', '')).stem + '_'
route_string = pathlib.Path(args.routes).stem + '_'
route_string += f'route{config.index}'
route_date_string = route_string + '_' + '_'.join(
map(lambda x: '%02d' % x, (now.month, now.day, now.hour, now.minute, now.second))
)
self._agent_watchdog = Watchdog(args.timeout)
self._agent_watchdog.start()
agent_class_name = getattr(self.module_agent, 'get_entry_point')()
agent_class_obj = getattr(self.module_agent, agent_class_name)
# Start the ROS1 bridge server only for ROS1 based agents.
if getattr(agent_class_obj, 'get_ros_version')() == 1 and self._ros1_server is None:
from leaderboard.autoagents.ros1_agent import ROS1Server
self._ros1_server = ROS1Server()
self._ros1_server.start()
# self.agent_instance = agent_class_obj(args.host, args.port, args.debug)
if int(os.environ.get('DATAGEN', 0))==1:
self.agent_instance = agent_class_obj(args.agent_config, config.index)
else:
self.agent_instance = agent_class_obj(args.agent_config, route_date_string)
self.agent_instance.set_global_plan(self.route_scenario.gps_route, self.route_scenario.route)
self.agent_instance.setup(args.agent_config, route_date_string, self.traffic_manager)
# Check and store the sensors
if not self.sensors:
self.sensors = self.agent_instance.sensors()
track = self.agent_instance.track
validate_sensor_configuration(self.sensors, track, args.track)
self.sensor_icons = [sensors_to_icons[sensor['type']] for sensor in self.sensors]
self.statistics_manager.save_sensors(self.sensor_icons)
self.statistics_manager.write_statistics()
self.sensors_initialized = True
self._agent_watchdog.stop()
self._agent_watchdog = None
except SensorConfigurationInvalid as e:
# The sensors are invalid -> set the ejecution to rejected and stop
print("\n\033[91mThe sensor's configuration used is invalid:")
print(f"{e}\033[0m\n")
entry_status, crash_message = FAILURE_MESSAGES["Sensors"]
result = self._register_statistics(route_date_string, config.index, entry_status, crash_message)
self._cleanup(result)
return True
except Exception:
# The agent setup has failed -> start the next route
print("\n\033[91mCould not set up the required agent:")
print(f"\n{traceback.format_exc()}\033[0m")
entry_status, crash_message = FAILURE_MESSAGES["Agent_init"]
result = self._register_statistics(route_date_string, config.index, entry_status, crash_message)
self._cleanup(result)
return False
print("\033[1m> Running the route\033[0m")
# Run the scenario
try:
# Load scenario and run it
if args.record:
self.client.start_recorder("{}.log".format(args.record), False) # changed to False, otherwise the log file become too large
self.manager.load_scenario(self.route_scenario, self.agent_instance, config.index, config.repetition_index)
self.manager.run_scenario()
except AgentError:
# The agent has failed -> stop the route
print("\n\033[91mStopping the route, the agent has crashed:")
print(f"\n{traceback.format_exc()}\033[0m")
entry_status, crash_message = FAILURE_MESSAGES["Agent_runtime"]
except Exception:
print("\n\033[91mError during the simulation:")
print(f"\n{traceback.format_exc()}\033[0m")
entry_status, crash_message = FAILURE_MESSAGES["Simulation"]
# Stop the scenario
try:
print("\033[1m> Stopping the route\033[0m")
self.manager.stop_scenario()
result = self._register_statistics(route_date_string, config.index, entry_status, crash_message)
if args.record:
self.client.stop_recorder()
self._cleanup(result)
except Exception:
print("\n\033[91mFailed to stop the scenario, the statistics might be empty:")
print(f"\n{traceback.format_exc()}\033[0m")
_, crash_message = FAILURE_MESSAGES["Simulation"]
# If the simulation crashed, stop the leaderboard, for the rest, move to the next route
return crash_message == "Simulation crashed"
def run(self, args):
"""
Run the challenge mode
"""
route_indexer = RouteIndexer(args.routes, args.repetitions, args.routes_subset)
if args.resume:
resume = route_indexer.validate_and_resume(args.checkpoint)
else:
resume = False
if resume:
self.statistics_manager.add_file_records(args.checkpoint)
else:
self.statistics_manager.clear_records()
self.statistics_manager.save_progress(route_indexer.index, route_indexer.total)
self.statistics_manager.write_statistics()
crashed = False
while route_indexer.peek() and not crashed:
# Run the scenario
config = route_indexer.get_next_config()
crashed = self._load_and_run_scenario(args, config)
# Save the progress and write the route statistics
self.statistics_manager.save_progress(route_indexer.index, route_indexer.total)
self.statistics_manager.write_statistics()
# Shutdown ROS1 bridge server if necessary
if self._ros1_server is not None:
self._ros1_server.shutdown()
# Go back to asynchronous mode
self._reset_world_settings()
if not crashed:
# Save global statistics
print("\033[1m> Registering the global statistics\033[0m")
self.statistics_manager.compute_global_statistics()
self.statistics_manager.validate_and_write_statistics(self.sensors_initialized, crashed)
return crashed
def main():
print("Running main() in leaderboard_evaluator_local.py")
description = "CARLA AD Leaderboard Evaluation: evaluate your Agent in CARLA scenarios\n"
# general parameters
parser = argparse.ArgumentParser(description=description, formatter_class=RawTextHelpFormatter)
parser.add_argument('--host', default='localhost',
help='IP of the host server (default: localhost)')
parser.add_argument('--port', default=2000, type=int,
help='TCP port to listen to (default: 2000)')
parser.add_argument('--traffic-manager-port', default=8000, type=int,
help='Port to use for the TrafficManager (default: 8000)')
parser.add_argument('--traffic-manager-seed', default=100, type=int,
help='Seed used by the TrafficManager (default: 100)')
parser.add_argument('--debug', type=int,
help='Run with debug output', default=0)
parser.add_argument('--record', type=str, default='',
help='Use CARLA recording feature to create a recording of the scenario')
parser.add_argument('--timeout', default=300.0, type=float,
help='Set the CARLA client timeout value in seconds')
# simulation setup
parser.add_argument('--routes', required=True,
help='Name of the routes file to be executed.')
parser.add_argument('--routes-subset', default='', type=str,
help='Execute a specific set of routes')
parser.add_argument('--repetitions', type=int, default=1,
help='Number of repetitions per route.')
# agent-related options
parser.add_argument("-a", "--agent", type=str,
help="Path to Agent's py file to evaluate", required=True)
parser.add_argument("--agent-config", type=str,
help="Path to Agent's configuration file", default="")
parser.add_argument("--track", type=str, default='SENSORS',
help="Participation track: SENSORS, MAP")
parser.add_argument('--resume', type=int, default=False,
help='Resume execution from last checkpoint?')
parser.add_argument("--checkpoint", type=str, default='./simulation_results.json',
help="Path to checkpoint used for saving statistics and resuming")
parser.add_argument("--debug-checkpoint", type=str, default='./live_results.txt',
help="Path to checkpoint used for saving live results")
arguments = parser.parse_args()
pathlib.Path(arguments.checkpoint).parent.mkdir(parents=True, exist_ok=True)
statistics_manager = StatisticsManager(arguments.checkpoint, arguments.debug_checkpoint)
leaderboard_evaluator = LeaderboardEvaluator(arguments, statistics_manager)
crashed = leaderboard_evaluator.run(arguments)
del leaderboard_evaluator
if crashed:
sys.exit(-1)
else:
sys.exit(0)
# CHANGED
def main_eval(arguments):
description = "CARLA AD Leaderboard Evaluation: evaluate your Agent in CARLA scenarios\n"
statistics_manager = StatisticsManager()
try:
leaderboard_evaluator = LeaderboardEvaluator(arguments, statistics_manager)
leaderboard_evaluator.run(arguments)
except Exception as e:
traceback.print_exc()
finally:
del leaderboard_evaluator
if __name__ == '__main__':
main()