-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathplant.py
581 lines (480 loc) · 23.6 KB
/
plant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
"""
Planning TransFormer implementation.
"""
import logging
import numpy as np
import torch
from torch import nn
from einops import rearrange
from PIL import Image
from pathlib import Path
import transfuser_utils as t_u
from focal_loss import FocalLoss
import cv2
from copy import deepcopy
from model import GRUWaypointsPredictorInterFuser
from nav_planner import LateralPIDController, get_throttle
from transformers import (
AutoConfig,
AutoModel,
)
logger = logging.getLogger(__name__)
class PlanT(nn.Module):
"""
Neural network that takes in bounding boxes and outputs waypoints for driving.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.lateral_pid_controller = LateralPIDController(self.config)
precisions = [
self.config.plant_precision_pos, self.config.plant_precision_pos, self.config.plant_precision_pos,
self.config.plant_precision_pos, self.config.plant_precision_angle, self.config.plant_precision_speed,
self.config.plant_precision_brake
]
trans_out_features = 512
if self.config.use_velocity:
trans_out_features = 512 + 128
self.vocab_size = [2**i for i in precisions]
auto_config = AutoConfig.from_pretrained(self.config.plant_hf_checkpoint)
n_embd = auto_config.hidden_size
self.model = AutoModel.from_config(config=auto_config)
# sequence padding for batching
# +1 because at this step we still have the type indicator
self.cls_emb = nn.Parameter(torch.randn(1, self.config.plant_num_attributes + 1))
# token embedding
self.tok_emb = nn.Linear(self.config.plant_num_attributes, n_embd)
# object type embedding
self.obj_token = nn.ParameterList(
[nn.Parameter(torch.randn(1, self.config.plant_num_attributes)) for _ in range(self.config.plant_object_types)])
self.obj_emb = nn.ModuleList(
[nn.Linear(self.config.plant_num_attributes, n_embd) for _ in range(self.config.plant_object_types)])
self.drop = nn.Dropout(self.config.plant_embd_pdrop)
# decoder head forecasting
# one head for each attribute type -> we have different precision per attribute
self.heads = nn.ModuleList([nn.Linear(n_embd, self.vocab_size[i]) for i in range(self.config.plant_num_attributes)])
# wp (CLS) decoding
if self.config.learn_origin:
self.wp_head = nn.Linear(trans_out_features, 66)
else:
self.wp_head = nn.Linear(trans_out_features, 64)
if self.config.use_wp_gru:
self.wp_decoder = nn.GRUCell(input_size=2 + 3, hidden_size=64)
self.wp_output = nn.Linear(64, 2)
# PID controller
self.turn_controller = t_u.PIDController(k_p=0.9, k_i=0.75, k_d=0.3, n=20)
self.speed_controller = t_u.PIDController(k_p=5.0, k_i=0.5, k_d=1.0, n=20)
if self.config.use_speed_weights:
self.speed_weights = torch.tensor(self.config.target_speed_weights)
else:
self.speed_weights = torch.ones_like(torch.tensor(self.config.target_speed_weights))
if self.config.use_label_smoothing:
label_smoothing = self.config.label_smoothing_alpha
else:
label_smoothing = 0.0
if self.config.use_focal_loss:
self.loss_speed = FocalLoss(alpha=self.speed_weights, gamma=self.config.focal_loss_gamma)
else:
self.loss_speed = nn.CrossEntropyLoss(weight=self.speed_weights, label_smoothing=label_smoothing)
self.velocity_normalization = nn.BatchNorm1d(1, affine=False)
if self.config.use_controller_input_prediction:
self.checkpoint_decoder = GRUWaypointsPredictorInterFuser(input_dim=512,
hidden_size=self.config.gru_hidden_size,
waypoints=self.config.num_route_points,
target_point_size=0)
self.target_speed_network = nn.Sequential(nn.Linear(trans_out_features + 3, 128), nn.ReLU(inplace=True),
nn.Linear(128, len(config.target_speeds)))
# PID controller for directly predicted input
self.turn_controller_direct = t_u.PIDController(k_p=self.config.turn_kp,
k_i=self.config.turn_ki,
k_d=self.config.turn_kd,
n=self.config.turn_n)
self.speed_controller_direct = t_u.PIDController(k_p=self.config.speed_kp,
k_i=self.config.speed_ki,
k_d=self.config.speed_kd,
n=self.config.speed_n)
if self.config.use_velocity:
self.velocity_encoder = nn.Sequential(nn.Linear(1, 128), nn.ReLU(inplace=True), nn.Linear(128, 128),
nn.ReLU(inplace=True))
self.apply(self._init_weights)
self.loss_forecast = nn.CrossEntropyLoss(ignore_index=self.config.ignore_index)
logger.info('number of parameters: %e', sum(p.numel() for p in self.parameters()))
self.visu_initialized = False
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=0.02)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
def create_optimizer_groups(self, weight_decay):
"""
This long function is unfortunately doing something very simple and is
being very defensive:
We are separating out all parameters of the model into two buckets:
those that will experience
weight decay for regularization and those that won't
(biases, and layernorm/embedding weights).
We are then returning the optimizer groups.
"""
# separate out all parameters to those that will and won't experience
# regularizing weight decay
decay = set()
no_decay = set()
whitelist_weight_modules = torch.nn.Linear
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, _ in m.named_parameters():
fpn = f'{mn}.{pn}' if mn else pn # full param name
if pn.endswith('bias'):
# all biases will not be decayed
no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
no_decay.add(fpn)
elif pn.endswith('_ih') or pn.endswith('_hh'):
# all recurrent weights will not be decayed
no_decay.add(fpn)
elif pn.endswith('_emb') or '_token' in pn:
no_decay.add(fpn)
elif 'bias_ih_l0' in pn or 'bias_hh_l0' in pn:
no_decay.add(fpn)
elif 'weight_ih_l0' in pn or 'weight_hh_l0' in pn:
decay.add(fpn)
# validate that we considered every parameter
param_dict = dict(self.named_parameters())
inter_params = decay & no_decay
union_params = decay | no_decay
assert (len(inter_params) == 0), f'parameters {str(inter_params)} made it into both decay/no_decay sets!'
assert (
len(param_dict.keys() - union_params) == 0
), f'parameters {str(param_dict.keys() - union_params)} were not ' \
f'separated into either decay/no_decay set!'
# create the pytorch optimizer object
optim_groups = [
{
'params': [param_dict[pn] for pn in sorted(list(decay))],
'weight_decay': weight_decay,
},
{
'params': [param_dict[pn] for pn in sorted(list(no_decay))],
'weight_decay': 0.0,
},
]
return optim_groups
def forward(self, bounding_boxes, route, target_point, light_hazard, stop_hazard, junction, velocity):
if self.config.plant_pretraining is None:
assert (target_point is not None), 'target_point must be provided for wp output'
assert (light_hazard is not None), 'light_hazard must be provided for wp output'
num_boxes_no_route = bounding_boxes.shape[1]
route_padding = torch.zeros((bounding_boxes.shape[0], route.shape[1], 6),
dtype=torch.float32,
device=bounding_boxes.device)
route_padding[:, :, 5] = -1 # Mask type set to other
route = torch.cat((route, route_padding), dim=2)
# Add route as pseudo bbs.
cls_token = self.cls_emb.repeat(bounding_boxes.shape[0], 1, 1)
bounding_boxes = torch.cat((cls_token, bounding_boxes, route), dim=1)
input_batch_type = bounding_boxes[:, :, 7] # class of bounding box
input_batch_data = bounding_boxes[:, :, :7]
# create masks by object type
car_mask = (input_batch_type == 0).unsqueeze(-1)
walker_mask = (input_batch_type == 1).unsqueeze(-1)
light_mask = (input_batch_type == 2).unsqueeze(-1)
stop_mask = (input_batch_type == 3).unsqueeze(-1)
route_mask = (input_batch_type == -1).unsqueeze(-1)
other_mask = torch.logical_and(walker_mask.logical_not(), car_mask.logical_not())
other_mask2 = torch.logical_and(light_mask.logical_not(), stop_mask.logical_not())
other_mask = torch.logical_and(other_mask, other_mask2)
other_mask = torch.logical_and(other_mask, route_mask.logical_not())
# CLS token will be other
masks = [car_mask, walker_mask, light_mask, stop_mask, route_mask, other_mask]
# get size of input
# batch size, number of objects, number of attributes
(batch, objects, _) = input_batch_data.shape
# embed tokens object wise (one object -> one token embedding)
input_batch_data = rearrange(input_batch_data, 'b objects attributes -> (b objects) attributes')
embedding = self.tok_emb(input_batch_data)
embedding = rearrange(embedding, '(b o) features -> b o features', b=batch, o=objects)
# create object type embedding
obj_embeddings = [
self.obj_emb[i](self.obj_token[i]) # pylint: disable=locally-disabled, unsubscriptable-object
for i in range(self.config.plant_object_types)
] # list of a tensors of size 1 x features
# add object type embedding to embedding (mask needed to only add to the correct tokens)
embedding = [(embedding + obj_embeddings[i]) * masks[i] for i in range(self.config.plant_object_types)]
embedding = torch.sum(torch.stack(embedding, dim=1), dim=1)
# embedding dropout
x = self.drop(embedding)
# Transformer Encoder; use embedding for hugging face model and get output states and attention map
output = self.model(**{'inputs_embeds': x}, output_attentions=True)
tf_features = output.last_hidden_state
# CLS feature
cls_feature = tf_features[:, 0, :]
preidction_features = tf_features[:, 1:num_boxes_no_route + 1, :]
route_features = tf_features[:, num_boxes_no_route + 1:route.shape[1] + num_boxes_no_route + 1, :]
# forecasting encoding
# vocab_size (vocab_size differs for each attribute)
# we forcast only for vehicles and pedestrians, (forecasts for other classes are ignore in the loss)
box_pred_logits = []
for i in range(self.config.plant_num_attributes):
head_output = self.heads[i](preidction_features)
box_pred_logits.append(head_output)
if self.config.use_velocity:
normalized_velocity = self.velocity_normalization(velocity)
velocity_embedding = self.velocity_encoder(normalized_velocity)
cls_feature = torch.cat((cls_feature, velocity_embedding), axis=1)
pred_wp = None
if self.config.use_wp_gru:
z = self.wp_head(cls_feature)
if self.config.learn_origin:
origin = z[:, 64:66]
z = z[:, :64]
output_wp = []
# initial input variable to GRU
if self.config.learn_origin:
x = origin
else:
x = torch.zeros(size=(z.shape[0], 2), dtype=z.dtype)
x = x.type_as(z)
# autoregressive generation of output waypoints
for _ in range(self.config.pred_len // self.config.wp_dilation):
x_in = torch.cat([x, light_hazard, stop_hazard, junction], dim=1)
z = self.wp_decoder(x_in, z)
dx = self.wp_output(z)
x = dx + x
output_wp.append(x)
pred_wp = torch.stack(output_wp, dim=1)
pred_target_speed = None
pred_checkpoint = None
if self.config.use_controller_input_prediction:
speed_in = torch.cat([cls_feature, light_hazard, stop_hazard, junction], dim=1)
pred_target_speed = self.target_speed_network(speed_in)
pred_checkpoint = self.checkpoint_decoder(route_features, None)
return pred_wp, pred_target_speed, pred_checkpoint, box_pred_logits
def compute_loss(self, pred_wp, pred_target_speed, pred_checkpoint, pred_future_bounding_box, waypoint_label,
target_speed_label, checkpoint_label, future_bounding_box_label):
loss = {}
if self.config.use_wp_gru:
loss_wp = torch.mean(torch.abs(pred_wp - waypoint_label))
loss.update({'loss_wp': loss_wp})
if self.config.use_controller_input_prediction:
loss_target_speed = self.loss_speed(pred_target_speed, target_speed_label)
loss.update({'loss_target_speed': loss_target_speed})
loss_wp = torch.mean(torch.abs(pred_checkpoint - checkpoint_label))
loss.update({'loss_checkpoint': loss_wp})
# Put boxes onto batch dimension to parallelize
pred_future_bounding_box = [
rearrange(box, 'b o vocab_size -> (b o) vocab_size') for box in pred_future_bounding_box
]
future_bounding_box_label = rearrange(future_bounding_box_label, 'b o vocab_size -> (b o) vocab_size')
# Compute mean cross entropy loss
loss_forcast = 0
for i in range(len(pred_future_bounding_box)):
loss_forcast += self.loss_forecast(pred_future_bounding_box[i], future_bounding_box_label[:, i])
loss_forcast = loss_forcast / len(pred_future_bounding_box)
loss.update({'loss_forcast': loss_forcast})
return loss
def control_pid(self, waypoints, velocity, tuned_aim_distance=False):
"""
Predicts vehicle control with a PID controller.
Used for waypoint predictions
"""
assert waypoints.size(0) == 1
waypoints = waypoints[0].data.cpu().numpy()
speed = velocity[0].data.cpu().numpy()
# m / s required to drive between waypoint 0.5 and 1.0 second in the future
one_second = int(self.config.carla_fps // (self.config.wp_dilation * self.config.data_save_freq))
half_second = one_second // 2 # = 2
desired_speed = np.linalg.norm(waypoints[half_second - 1] - waypoints[one_second - 1]) * 2.0
brake = ((desired_speed < self.config.brake_speed) or ((speed / desired_speed) > self.config.brake_ratio))
delta = np.clip(desired_speed - speed, 0.0, self.config.clip_delta)
throttle = self.speed_controller.step(delta)
throttle = np.clip(throttle, 0.0, self.config.clip_throttle)
throttle = throttle if not brake else 0.0
if tuned_aim_distance: # In LB2, we go faster, so we need to choose waypoints farther ahead
# range [2.4, 10.5] same as in the disentangled rep.
aim_distance = np.clip(0.975532 * speed + 1.915288, 24, 105) / 10
else:
# To replicate the slow TransFuser behaviour we have a different distance
# inside and outside of intersections (detected by desired_speed)
if desired_speed < self.config.aim_distance_threshold:
aim_distance = self.config.aim_distance_slow
else:
aim_distance = self.config.aim_distance_fast
# We follow the waypoint that is at least a certain distance away
aim_index = waypoints.shape[0] - 1
for index, predicted_waypoint in enumerate(waypoints):
if np.linalg.norm(predicted_waypoint) >= aim_distance:
aim_index = index
break
aim = waypoints[aim_index]
angle = np.degrees(np.arctan2(aim[1], aim[0])) / 90.0
if speed < 0.01:
# When we don't move we don't want the angle error to accumulate in the integral
angle = 0.0
if brake:
angle = 0.0
steer = self.turn_controller.step(angle)
steer = np.clip(steer, -1.0, 1.0) # Valid steering values are in [-1,1]
return steer, throttle, brake
# PID controller based on direct predictions
def control_pid_direct(self,
pred_checkpoints,
pred_target_speed,
speed,
ego_vehicle_location=0,
ego_vehicle_rotation=0):
# Convert to numpy
speed = speed[0].data.cpu().numpy()
# Target speed of 0 means brake
brake = pred_target_speed < 0.01 or (speed / pred_target_speed) > self.config.brake_ratio
steer = self.lateral_pid_controller.step(pred_checkpoints, speed, ego_vehicle_location, ego_vehicle_rotation)
throttle, control_brake = get_throttle(self.config, brake, pred_target_speed, speed)
throttle = np.clip(throttle, 0.0, self.config.clip_throttle)
steer = np.clip(steer, -1.0, 1.0)
steer = round(float(steer), 3)
return steer, throttle, control_brake
def init_visualization(self):
# Privileged map access for visualization
if self.config.debug:
from birds_eye_view.chauffeurnet import ObsManager # pylint: disable=locally-disabled, import-outside-toplevel
from srunner.scenariomanager.carla_data_provider import CarlaDataProvider # pylint: disable=locally-disabled, import-outside-toplevel
obs_config = {
'width_in_pixels': self.config.lidar_resolution_width * 4,
'pixels_ev_to_bottom': self.config.lidar_resolution_height / 2.0 * 4,
'pixels_per_meter': self.config.pixels_per_meter * 4,
'history_idx': [-1],
'scale_bbox': True,
'scale_mask_col': 1.0,
'map_folder': 'maps_8ppm_cv'
}
self._vehicle = CarlaDataProvider.get_hero_actor()
self.ss_bev_manager = ObsManager(obs_config, self.config)
self.ss_bev_manager.attach_ego_vehicle(self._vehicle, criteria_stop=None)
self.visu_initialized = True
def visualize_model( # pylint: disable=locally-disabled, unused-argument
self,
save_path,
step,
rgb,
gt_bbs,
gt_wp,
target_point=None,
pred_wp=None,
pred_bb=None,
pred_checkpoint=None,
light_hazard=None,
stop_sign_hazard=None,
junction=None,
gt_speed=None,
pred_speed=None):
# 0 Car, 1 Pedestrian, 2 Red light, 3 Stop sign
color_classes = [
np.array([255, 165, 0]),
np.array([0, 255, 0]),
np.array([255, 0, 0]),
np.array([250, 160, 160]),
np.array([16, 133, 133])
]
text_color = (0, 0, 0)
size_width = int((self.config.max_y - self.config.min_y) * self.config.pixels_per_meter)
size_height = int((self.config.max_x - self.config.min_x) * self.config.pixels_per_meter)
scale_factor = 4
origin = ((size_width * scale_factor) // 2, (size_height * scale_factor) // 2)
loc_pixels_per_meter = self.config.pixels_per_meter * scale_factor
width = rgb.shape[2]
rgb = np.transpose(rgb, (1, 2, 0))
bev_image = np.ones((width, width, 3), dtype=np.uint8) * 255
if self.visu_initialized:
# Render road over image
road = self.ss_bev_manager.get_road()
# Alpha blending the road over the LiDAR
bev_image = road[:, :, 3:4] * road[:, :, :3] + (1 - road[:, :, 3:4]) * bev_image
# Visualize Ego vehicle
sample_box = np.array([
int(origin[0]),
int(origin[1]), self.config.ego_extent_x * loc_pixels_per_meter,
self.config.ego_extent_y * loc_pixels_per_meter,
np.deg2rad(90.0), 0.0
])
bev_image = t_u.draw_box(bev_image, sample_box, color=(0, 200, 0), pixel_per_meter=16, thickness=4)
# Draw input boxes
if gt_bbs is not None:
gt_bbs = gt_bbs.detach().cpu().numpy()[0]
real_boxes = gt_bbs.sum(axis=-1) != 0.
gt_bbs = gt_bbs[real_boxes]
pred_bb = pred_bb.detach().cpu().numpy()
pred_bb = pred_bb[real_boxes]
future_bev = deepcopy(bev_image)
for idx, box in enumerate(gt_bbs):
future_center = pred_bb[idx]
box_img = t_u.bb_vehicle_to_image_system(box, loc_pixels_per_meter, self.config.min_x, self.config.min_y)
future_center_img = t_u.bb_vehicle_to_image_system(future_center, loc_pixels_per_meter, self.config.min_x,
self.config.min_y)
color = color_classes[int(box[7])]
bev_image = t_u.draw_box(bev_image, box_img, color=color, pixel_per_meter=loc_pixels_per_meter)
future_bev = t_u.draw_box(future_bev, future_center_img, color=color, pixel_per_meter=loc_pixels_per_meter)
alpha = 0.3
bev_image = alpha * future_bev + (1.0 - alpha) * bev_image
# Need to sometimes do this so that cv2 doesn't start crying
bev_image = np.ascontiguousarray(bev_image, dtype=np.uint8)
# Draw route input
if gt_wp is not None:
gt_wp = gt_wp.detach().cpu().numpy()[0]
for point in gt_wp:
x_tp = point[0] * loc_pixels_per_meter + origin[0]
y_tp = point[1] * loc_pixels_per_meter + origin[1]
cv2.circle(bev_image, (int(x_tp), int(y_tp)), radius=10, lineType=cv2.LINE_AA, color=(255, 0, 0), thickness=-1)
# Green predicted checkpoint
if pred_checkpoint is not None:
for wp in pred_checkpoint:
wp_x = wp[0] * loc_pixels_per_meter + origin[0]
wp_y = wp[1] * loc_pixels_per_meter + origin[1]
cv2.circle(bev_image, (int(wp_x), int(wp_y)), radius=8, lineType=cv2.LINE_AA, color=(0, 128, 255), thickness=-1)
# Blue predicted wp
if pred_wp is not None:
pred_wps = pred_wp.detach().cpu().numpy()[0]
num_wp = len(pred_wps)
for idx, wp in enumerate(pred_wps):
color_weight = 0.5 + 0.5 * float(idx) / num_wp
wp_x = wp[0] * loc_pixels_per_meter + origin[0]
wp_y = wp[1] * loc_pixels_per_meter + origin[1]
cv2.circle(bev_image, (int(wp_x), int(wp_y)),
radius=8,
lineType=cv2.LINE_AA,
color=(0, 0, int(color_weight * 255)),
thickness=-1)
bev_image = np.rot90(bev_image, k=1)
# Draw target speed classification
if pred_speed is not None:
bev_image = np.ascontiguousarray(bev_image, dtype=np.uint8)
t_u.draw_probability_boxes(bev_image, pred_speed, self.config.target_speeds)
# Draw the car speed
if gt_speed is not None:
bev_image = np.ascontiguousarray(bev_image, dtype=np.uint8)
speed = float(gt_speed.detach().cpu().numpy()[0])
cv2.putText(bev_image, f'Car speed: {int(round(speed * 3.6))} km/h', (650, 1000), cv2.FONT_HERSHEY_SIMPLEX, 1.0,
text_color, 1, cv2.LINE_AA)
if junction is not None:
junction = bool(junction.detach().cpu().numpy()[0])
cv2.putText(bev_image, f'Junction?: {str(junction)}', (650, 965), cv2.FONT_HERSHEY_SIMPLEX, 1.0, text_color, 1,
cv2.LINE_AA)
# Draw flags
if stop_sign_hazard is not None:
stop_sign_hazard = bool(stop_sign_hazard.detach().cpu().numpy()[0])
cv2.putText(bev_image, f'Stop sign?: {str(stop_sign_hazard)}', (50, 1000), cv2.FONT_HERSHEY_SIMPLEX, 1.0,
text_color, 1, cv2.LINE_AA)
if light_hazard is not None:
light_hazard = bool(light_hazard.detach().cpu().numpy()[0])
cv2.putText(bev_image, f'Red light?: {str(light_hazard)}', (50, 965), cv2.FONT_HERSHEY_SIMPLEX, 1.0, text_color,
1, cv2.LINE_AA)
final_image = np.concatenate((rgb, bev_image), axis=0)
final_image = Image.fromarray(final_image.astype(np.uint8))
store_path = str(str(save_path) + (f'/{step:04}.jpg'))
Path(store_path).parent.mkdir(parents=True, exist_ok=True)
final_image.save(store_path)