-
Notifications
You must be signed in to change notification settings - Fork 55
/
train.py
214 lines (184 loc) · 9.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Copyright (c) 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""
Train a GAN using the techniques described in the paper
"StyleGAN-T: Unlocking the Power of GANs for Fast Large-Scale Text-to-Image Synthesis".
"""
import os
import re
import json
from pathlib import Path
from typing import Union
from glob import glob
import torch
import click
import dnnlib
from training import training_loop
from metrics import metric_main
from torch_utils import distributed as dist
from torch_utils import custom_ops
def parse_comma_separated_list(s: Union[None, str, list]) -> Union[list, str]:
if isinstance(s, list):
return s
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
def is_power_of_two(n: int) -> bool:
return (n != 0) and (n & (n-1) == 0)
def init_dataset_kwargs(data: str, resolution: int) -> dnnlib.EasyDict:
d_kwargs = dnnlib.EasyDict(path=data, xflip=False, use_labels=True)
is_wds = len(glob(f'{data}/**/*.tar')) > 0 # check if files are tars, then it's a webdataset
if is_wds:
assert resolution, "Provide desired resolution when training on webdatasets."
d_kwargs.class_name = 'training.data_wds.WdsWrapper'
else:
d_kwargs.class_name = 'training.data_zip.ImageFolderDataset'
dataset_obj = dnnlib.util.construct_class_by_name(**d_kwargs) # Subclass of training.dataset.Dataset.
assert resolution <= dataset_obj._raw_shape[-1], f"Native dataset resolution is smaller than {resolution}"
assert is_power_of_two(resolution)
d_kwargs.resolution = resolution
return d_kwargs
@click.command("cli", context_settings={'show_default': True})
# Required.
@click.option('--outdir', help='Where to save the results', type=str, required=True)
@click.option('--data', help='Training data', type=str, required=True)
@click.option('--img-resolution', help='Resolution for webdatasets', type=click.IntRange(min=8), required=True)
@click.option('--batch', help='Total batch size', type=click.IntRange(min=1), required=True)
@click.option('--batch-gpu', help='Limit batch size per GPU', type=click.IntRange(min=1), default=8)
# G architecture args
@click.option('--cfg', help='Base config.', type=click.Choice(['custom', 'lite', 'full']), default='custom')
@click.option('--cbase', help='Capacity multiplier', type=click.IntRange(min=1), default=32768)
@click.option('--cmax', help='Max. feature maps', type=click.IntRange(min=1), default=512)
@click.option('--res-blocks', help='Number of residual blocks', type=click.IntRange(min=1), default=2)
# Resuming.
@click.option('--resume', help='Resume from given network pickle', type=str)
@click.option('--resume-kimg', help='Resume from given kimg', type=click.IntRange(min=0), default=0)
# Training params.
@click.option('--train-mode', help='Which layers to train', type=click.Choice(['all', 'text_encoder', 'freeze64']), default='all')
@click.option('--clip-weight', help='Loss weight for clip loss', type=float, default=0)
@click.option('--blur-init', help='Init blur width', type=click.IntRange(min=0), default=32,)
@click.option('--blur-fade-kimg', help='Discriminator blur duration', type=click.IntRange(min=0), default=1000)
# Misc settings.
@click.option('--suffix', help='suffix of result dirname', type=str, default='')
@click.option('--metrics', help='Quality metrics', type=parse_comma_separated_list, default=[])
@click.option('--kimg', help='Total training duration', type=click.IntRange(min=1), default=25000)
@click.option('--tick', help='How often to print progress', type=click.IntRange(min=1), default=4)
@click.option('--snap', help='How often to save snapshots', type=click.IntRange(min=1), default=100)
@click.option('--seed', help='Random seed', type=click.IntRange(min=0), default=0)
@click.option('--fp32', help='Disable mixed-precision', type=bool, default=False)
@click.option('--nobench', help='Disable cuDNN benchmarking', type=bool, default=False)
@click.option('--workers', help='DataLoader worker processes', type=click.IntRange(min=1), default=3)
@click.option('--dry-run', help='Print training options and exit', type=bool, is_flag=True)
def main(**kwargs) -> None:
# Initialize config.
torch.multiprocessing.set_start_method('spawn')
dist.init()
opts = dnnlib.EasyDict(kwargs)
c = dnnlib.EasyDict()
# Networks.
c.D_kwargs = dnnlib.EasyDict(class_name='networks.discriminator.ProjectedDiscriminator')
c.G_kwargs = dnnlib.EasyDict(class_name='networks.generator.Generator', z_dim=64)
c.G_kwargs.train_mode = opts.train_mode
# Synthesis settings.
cfg_synthesis = {
'full': dnnlib.EasyDict(channel_base=65536, channel_max=2048, num_res_blocks=3),
'lite': dnnlib.EasyDict(channel_base=32768, channel_max=512, num_res_blocks=2),
'custom': dnnlib.EasyDict(channel_base=opts.cbase, channel_max=opts.cmax, num_res_blocks=opts.res_blocks),
}
c.G_kwargs.synthesis_kwargs = cfg_synthesis[opts.cfg]
c.G_kwargs.synthesis_kwargs.architecture = 'skip'
# Optimizer.
c.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0, 0.99], eps=1e-8, lr=0.002)
c.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', betas=[0, 0.99], eps=1e-8, lr=0.002)
if c.G_kwargs.train_mode == 'text_encoder':
c.G_opt_kwargs.lr = 3e-6
# Loss.
c.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.ProjectedGANLoss')
c.loss_kwargs.blur_init_sigma = opts.blur_init
c.loss_kwargs.blur_fade_kimg = opts.blur_fade_kimg
c.loss_kwargs.clip_weight = opts.clip_weight
# Data.
c.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, num_workers=3, prefetch_factor=2)
c.training_set_kwargs = init_dataset_kwargs(data=opts.data, resolution=opts.img_resolution)
c.G_kwargs.img_resolution = c.training_set_kwargs.resolution
desc = f'{Path(c.training_set_kwargs.path).stem}@{c.training_set_kwargs.resolution}-{opts.cfg}-'
# Logging.
c.random_seed = c.training_set_kwargs.random_seed = opts.seed
c.image_snapshot_ticks = c.network_snapshot_ticks = opts.snap
c.metrics = opts.metrics
c.total_kimg = opts.kimg
c.kimg_per_tick = opts.tick
# GPUs and batch size.
c.batch_size = opts.batch
c.batch_gpu = opts.batch_gpu
c.ema_kimg = c.batch_size * 10 / 32
desc += f'gpus{dist.get_world_size():d}-b{c.batch_size}-bgpu{c.batch_gpu}'
# Sanity checks.
if c.batch_size % dist.get_world_size() != 0:
raise click.ClickException('--batch must be a multiple of --gpus')
if c.batch_size % (dist.get_world_size() * c.batch_gpu) != 0:
raise click.ClickException('--batch must be a multiple of --gpus times --batch-gpu')
if any(not metric_main.is_valid_metric(metric) for metric in c.metrics):
err = ['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()
raise click.ClickException('\n'.join(err))
# Resume.
if opts.resume is not None:
c.resume_pkl = opts.resume
c.resume_kimg = opts.resume_kimg
c.ema_rampup = None # Disable EMA rampup.
# Performance-related toggles.
if opts.fp32:
c.G_kwargs.num_fp16_res = 0
c.G_kwargs.conv_clamp = None
if opts.nobench:
c.cudnn_benchmark = False
if opts.suffix:
desc += f'-{opts.suffix}'
# Pick output directory.
if dist.get_rank() != 0:
c.run_dir = None
else:
prev_run_dirs = []
if os.path.isdir(opts.outdir):
prev_run_dirs = [x for x in os.listdir(opts.outdir) if os.path.isdir(os.path.join(opts.outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
c.run_dir = os.path.join(opts.outdir, f'{cur_run_id:05d}-{desc}')
assert not os.path.exists(c.run_dir)
# Print options.
dist.print0()
dist.print0('Training options:')
dist.print0(json.dumps(c, indent=2))
dist.print0()
dist.print0(f'Output directory: {c.run_dir}')
dist.print0(f'Number of GPUs: {dist.get_world_size()}')
dist.print0(f'Batch size: {c.batch_size} images')
dist.print0(f'Training duration: {c.total_kimg} kimg')
dist.print0(f'Dataset path: {c.training_set_kwargs.path}')
dist.print0(f'Dataset resolution: {c.training_set_kwargs.resolution}')
dist.print0(f'Dataset labels: {c.training_set_kwargs.use_labels}')
dist.print0(f'Dataset x-flips: {c.training_set_kwargs.xflip}')
dist.print0()
# Dry run?
if opts.dry_run:
dist.print0('Dry run; exiting.')
return
# Create output directory.
dist.print0('Creating output directory...')
if dist.get_rank() == 0:
os.makedirs(c.run_dir, exist_ok=True)
with open(os.path.join(c.run_dir, 'training_options.json'), 'wt+') as f:
json.dump(c, f, indent=2)
dnnlib.util.Logger(file_name=os.path.join(c.run_dir, 'log.txt'), file_mode='a', should_flush=True)
else:
custom_ops.verbosity = 'none'
# Train.
training_loop.training_loop(**c)
if __name__ == "__main__":
main() # pylint: disable=no-value-for-parameter