Skip to content

Commit

Permalink
Make README section links relative
Browse files Browse the repository at this point in the history
Signed-off-by: Emanuele Giaquinta <[email protected]>
  • Loading branch information
exg committed Oct 28, 2023
1 parent 404a171 commit 2bf3481
Showing 1 changed file with 28 additions and 28 deletions.
56 changes: 28 additions & 28 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,11 @@
ormsgpack is a fast msgpack library for Python. It is a fork/reboot of [orjson](https://github.com/ijl/orjson)
It serializes faster than [msgpack-python](https://github.com/msgpack/msgpack-python) and deserializes a bit slower (right now).
It supports serialization of:
[dataclass](https://github.com/aviramha/ormsgpack#dataclass),
[datetime](https://github.com/aviramha/ormsgpack#datetime),
[numpy](https://github.com/aviramha/ormsgpack#numpy),
[pydantic](https://github.com/aviramha/ormsgpack#OPT_SERIALIZE_PYDANTIC) and
[UUID](https://github.com/aviramha/ormsgpack#uuid) instances natively.
[dataclass](#dataclass),
[datetime](#datetime),
[numpy](#numpy),
[pydantic](#OPT_SERIALIZE_PYDANTIC) and
[UUID](#uuid) instances natively.

Its features and drawbacks compared to other Python msgpack libraries:

Expand All @@ -31,26 +31,26 @@ submitted there. There is a
[CHANGELOG](https://github.com/aviramha/ormsgpack/blob/master/CHANGELOG.md)
available in the repository.

1. [Usage](https://github.com/aviramha/ormsgpack#usage)
1. [Install](https://github.com/aviramha/ormsgpack#install)
2. [Quickstart](https://github.com/aviramha/ormsgpack#quickstart)
4. [Serialize](https://github.com/aviramha/ormsgpack#serialize)
1. [default](https://github.com/aviramha/ormsgpack#default)
2. [option](https://github.com/aviramha/ormsgpack#option)
5. [Deserialize](https://github.com/aviramha/ormsgpack#deserialize)
2. [Types](https://github.com/aviramha/ormsgpack#types)
1. [dataclass](https://github.com/aviramha/ormsgpack#dataclass)
2. [datetime](https://github.com/aviramha/ormsgpack#datetime)
3. [enum](https://github.com/aviramha/ormsgpack#enum)
4. [float](https://github.com/aviramha/ormsgpack#float)
5. [int](https://github.com/aviramha/ormsgpack#int)
6. [numpy](https://github.com/aviramha/ormsgpack#numpy)
7. [uuid](https://github.com/aviramha/ormsgpack#uuid)
8. [pydantic](https://github.com/aviramha/ormsgpack#pydantic)
3. [Latency](https://github.com/aviramha/ormsgpack#latency)
4. [Questions](https://github.com/aviramha/ormsgpack#questions)
5. [Packaging](https://github.com/aviramha/ormsgpack#packaging)
6. [License](https://github.com/aviramha/ormsgpack#license)
1. [Usage](#usage)
1. [Install](#install)
2. [Quickstart](#quickstart)
4. [Serialize](#serialize)
1. [default](#default)
2. [option](#option)
5. [Deserialize](#deserialize)
2. [Types](#types)
1. [dataclass](#dataclass)
2. [datetime](#datetime)
3. [enum](#enum)
4. [float](#float)
5. [int](#int)
6. [numpy](#numpy)
7. [uuid](#uuid)
8. [pydantic](#pydantic)
3. [Latency](#latency)
4. [Questions](#questions)
5. [Packaging](#packaging)
6. [License](#license)

## Usage

Expand All @@ -66,7 +66,7 @@ pip install --upgrade ormsgpack
Notice that Linux environments with a `pip` version shipped in 2018 or earlier
must first upgrade `pip` to support `manylinux2014` wheels.

To build a wheel, see [packaging](https://github.com/aviramha/ormsgpack#packaging).
To build a wheel, see [packaging](#packaging).

### Quickstart

Expand Down Expand Up @@ -115,7 +115,7 @@ The global interpreter lock (GIL) is held for the duration of the call.
It raises `MsgpackEncodeError` on an unsupported type. This exception message
describes the invalid object with the error message
`Type is not JSON serializable: ...`. To fix this, specify
[default](https://github.com/aviramha/ormsgpack#default).
[default](#default).

It raises `MsgpackEncodeError` on a `str` that contains invalid UTF-8.

Expand Down Expand Up @@ -378,7 +378,7 @@ Passthrough tuples to `default`.
##### OPT_SERIALIZE_NUMPY

Serialize `numpy.ndarray` instances. For more, see
[numpy](https://github.com/aviramha/ormsgpack#numpy).
[numpy](#numpy).

##### OPT_SERIALIZE_PYDANTIC
Serialize `pydantic.BaseModel` instances. Right now it ignores the config (str transformations), support might be added
Expand Down

0 comments on commit 2bf3481

Please sign in to comment.