Skip to content
This repository has been archived by the owner on Jul 1, 2024. It is now read-only.

Keras-mxnet 2.2.4 release #193

Merged
merged 172 commits into from
Oct 9, 2018
Merged
Show file tree
Hide file tree
Changes from 165 commits
Commits
Show all changes
172 commits
Select commit Hold shift + click to select a range
aa8d7f7
avoid url error exception (#10887)
kouml Aug 14, 2018
f99f633
Fix check equality between static shape and dynamic shape in test (#1…
yanboliang Aug 14, 2018
bb9b800
Argument target_tensors from Model.compile: accept single tensor (#10…
rvinas Aug 14, 2018
cf7d3d2
[P] Add LR for Tensorboard in LearningRateScheduler (#10908)
ChrisGll Aug 14, 2018
e6817ea
Style fixes for enabling PEP8 501 (#10916)
taehoonlee Aug 15, 2018
67fc091
Update TensorFlow as 1.9 on Travis (#10674)
taehoonlee Aug 15, 2018
b2f75b7
[P] all save_model/load_model to accept h5py.Group (#10912)
tacaswell Aug 16, 2018
0151028
Raise warning if both class_weight and sample_weight given (#10921)
Aug 16, 2018
695a928
GlobalAveragePooling1D supports masking (#10913)
yanboliang Aug 16, 2018
c7b7328
Add static shape inference for theano concatenate and all (#10873)
yanboliang Aug 16, 2018
1fc585a
EarlyStopping: restore model weights corresponding to best value of m…
MarcoAndreaBuchmann Aug 18, 2018
7386841
Fix CI on TensorFlow (#10929)
taehoonlee Aug 21, 2018
213170d
Fix multi-output Siamese networks in multi_gpu_model (#10856)
datumbox Aug 21, 2018
f1271c7
add installing pydot (#10937)
kouml Aug 21, 2018
c8e3b60
Update cifar10_cnn_capsule.py (#10927)
jankrepl Aug 21, 2018
a36ed70
Fix Theano shape inference bug.
fchollet Aug 21, 2018
907e803
Speed up backend tests (#10930)
taehoonlee Aug 21, 2018
bca4cc4
Style fixes for enabling PEP8 501 (#10931)
taehoonlee Aug 21, 2018
529daf1
Bypass CNTK shape inference issue.
fchollet Aug 21, 2018
9d8bc0a
Merge branch 'master' of github.com:fchollet/keras
fchollet Aug 21, 2018
8c6f8d8
Support recurrent kernel using identity initializer (#10934)
joelthchao Aug 21, 2018
6746bda
Fix val_step in fit_generator with Sequence (#10946)
Aug 21, 2018
23c40e6
Refactoring: Made an abstract class for all the cropping layers. (#10…
gabrieldemarmiesse Aug 21, 2018
6d30ab7
Integration with redesigned preprocessing & applications modules. (#1…
fchollet Aug 22, 2018
c60f1e1
Removed redundant tests in the backends. (#10953)
gabrieldemarmiesse Aug 22, 2018
38ce465
Added in the documentation an example of custom layer with multiple i…
gabrieldemarmiesse Aug 22, 2018
79a48bd
Style fixes for enabling PEP8 501 (#10957)
taehoonlee Aug 22, 2018
1788a0a
Enable NASNetMobile in integration_tests for Theano and CNTK (#10962)
taehoonlee Aug 22, 2018
57fba26
[P] add data_format support for Pooling1D layers (#10966)
hsgkim Aug 23, 2018
d8796e0
Removed duplicated backend test. (#10959)
gabrieldemarmiesse Aug 23, 2018
eb8b70a
Speed up backend tests (#10956)
taehoonlee Aug 23, 2018
d88f200
Fix dilated convolution for CNTK backend. (#10967)
yanboliang Aug 23, 2018
23bdd4d
Generators now use same logic as Sequence (#10925)
Aug 23, 2018
1a2290a
Created a dummy 'variable' function in the numpy backend to replace t…
gabrieldemarmiesse Aug 25, 2018
09a984b
Added a if-else which was forgotten in the tests. (#10986)
gabrieldemarmiesse Aug 25, 2018
96c3c19
Enable examples pep8 (#10968)
kouml Aug 25, 2018
12d5732
Added travis_retry for commands which often fail. (#10980)
gabrieldemarmiesse Aug 25, 2018
4bcb8c9
Moved the preprocessing tests into the integration directory. (#10963)
gabrieldemarmiesse Aug 25, 2018
028c47d
Fix broken links in FAQ (#11010)
JamesHinshelwood Aug 27, 2018
ff87f16
ignore PEP8 W503 (#10976)
joelthchao Aug 27, 2018
785d6e3
Used "pip install cntk" to simplify the installation of CNTK. (#11011)
gabrieldemarmiesse Aug 28, 2018
be6d829
Speed up backend tests (#10992)
taehoonlee Aug 28, 2018
c6beaa5
Trying to find a clue about the flaky test of (#10995)
gabrieldemarmiesse Aug 28, 2018
e40ffd2
Speed up random_normal backend test.
fchollet Aug 28, 2018
7a195b6
Convolutional layer supports float64 dtype after tensorflow 1.8.0 (#1…
joelthchao Aug 28, 2018
4e4e57d
Update causal Conv1D doc : uses zero padding #8751 (#10999)
BertrandDechoux Aug 28, 2018
4f110b6
Remove unnecessary pytest timeout
fchollet Aug 28, 2018
72e326d
Made a base class for ZeroPadding. (#10984)
gabrieldemarmiesse Aug 28, 2018
1b2ac89
Reduce test flakyness.
fchollet Aug 28, 2018
e5bc615
Merge branch 'master' of github.com:fchollet/keras
fchollet Aug 28, 2018
f06c7e4
Conv1D and Conv3D supporting dilated conv for CNTK backend (#10997)
yanboliang Aug 28, 2018
4562b64
Allow TB callback to display float values.
fchollet Aug 28, 2018
f6ed1c8
Fix issue with non-canonical TF version name format.
fchollet Aug 28, 2018
4c01596
Separate pooling test from convolutional test and parameterize test c…
joelthchao Aug 29, 2018
cc3521e
[RELNOTES] Added the mode "bilinear" in the upscaling2D layer. (#10994)
gabrieldemarmiesse Aug 30, 2018
8e8f989
[P] Expose monitor value getter for easier subclass (#11002)
joelthchao Aug 30, 2018
3b7b071
Speeding up the tests by reducing the number of K.eval(). (#11036)
gabrieldemarmiesse Aug 30, 2018
cc380c4
fix a bug, load_weights doesn't return anything (#11031)
linjinjin123 Aug 30, 2018
e8f8e62
Update lstm text generation example (#11038)
hadifar Aug 30, 2018
5027630
Better UX (#11039)
Aug 30, 2018
fa51c5c
Enable using last incomplete minibatch (#8344)
ozabluda Aug 30, 2018
1ef2843
Fix line too long in mnist_acgan (#11040)
yanboliang Aug 30, 2018
76da5f0
Doc Change: Change in shape for CIFAR Datasets (#11043)
Aug 31, 2018
6dd087a
[P, RELNOTES] Conv2DTranspose supports dilation (#11029)
yanboliang Aug 31, 2018
780f5e4
Removing duplicated backend tests. (#11037)
gabrieldemarmiesse Aug 31, 2018
44b03ea
Cached the theano compilation directory. (#11048)
gabrieldemarmiesse Aug 31, 2018
c7f4ad5
Used decorators and WITH_NP to avoid tests duplication. (#11050)
gabrieldemarmiesse Sep 1, 2018
6f53d0a
Skipped some duplicated tests. (#11049)
gabrieldemarmiesse Sep 1, 2018
545acc4
Speed up backend tests (#11051)
taehoonlee Sep 1, 2018
f899d0f
Make sure the data_format argument defaults to ‘chanels_last’ for all…
fchollet Sep 2, 2018
1915f10
Added in_train_phase and in_test_phase in the numpy backend. (#11061)
gabrieldemarmiesse Sep 3, 2018
f1b1b0d
Update Dockerfile to fix error introduced by #11011 (#11073)
cshubhamrao Sep 4, 2018
f921038
Made the backend tests faster by using the numpy backend in the (#11062)
gabrieldemarmiesse Sep 5, 2018
66f8cc7
Update the RNN cell API to be explicit about output_size. (#11021)
qlzh727 Sep 5, 2018
a9d9595
Revise the performance table for applications (#11085)
taehoonlee Sep 5, 2018
105f6e2
Update variational_autoencoder_deconv.py (#11081)
linjinjin123 Sep 5, 2018
9e1a0df
Skipped the training tests when the layer has the same behavior at tr…
gabrieldemarmiesse Sep 5, 2018
2780ab0
Refactor Enqueuers (#11079)
Sep 5, 2018
23c20f7
Section for Training history visualization (#11076)
alfasst Sep 5, 2018
c2a6caa
Made an abstract class for upsampling. (#11065)
gabrieldemarmiesse Sep 5, 2018
9400be9
Add missing raise for ValueError at Embedding compute_output_shape (#…
yanboliang Sep 6, 2018
244546c
Fix TF Function accepts session_kwargs: options and run_metadata (#11…
yanboliang Sep 10, 2018
c913b6d
Support multiple axes for some operations (tests and docs) (#11114)
rvinas Sep 11, 2018
5a6af4b
fix sparse categorical acc (#11100)
roywei Sep 11, 2018
9a4c5d8
[RELNOTES] [P] Make Keras models pickle-able (refactored) (#11030)
farizrahman4u Sep 11, 2018
cb9d79e
Removed the tests of each layers in the sequential model. (#11115)
gabrieldemarmiesse Sep 11, 2018
9149ff8
Simplified the cntk backend tests and made them more readable. (#11116)
gabrieldemarmiesse Sep 12, 2018
06c3a80
Fix bug when channel=1 (#11123)
Sep 12, 2018
ba7ab2f
[Refactoring] Removed code duplication in the theano backend. (#11131)
gabrieldemarmiesse Sep 13, 2018
8be9909
Fix filename collisions in io_utils tests.
fchollet Sep 13, 2018
2c791b0
io tests: clean up files.
fchollet Sep 13, 2018
ff89e2d
Fix error messages related to model saving.
fchollet Sep 13, 2018
514aca2
Add integration test checking compatibility of Keras models with TF o…
fchollet Sep 13, 2018
fe38f9d
Modify Sequential config to include model name (breaking change). Mat…
fchollet Sep 13, 2018
98e17b1
Fix pep8
fchollet Sep 13, 2018
818c1a2
Merge branch 'master' of github.com:fchollet/keras
fchollet Sep 13, 2018
842d360
Added the exponential activation. (#11136)
gabrieldemarmiesse Sep 14, 2018
5b62434
Breaking down the attention API PR: part 2 (#11140)
gabrieldemarmiesse Sep 14, 2018
f60313e
Fixed the windows line endings in the CSVCallback. (#11124)
gabrieldemarmiesse Sep 14, 2018
40a9ecc
Used a with statement instead of a close statement for robustness. (#…
gabrieldemarmiesse Sep 15, 2018
cd22c5a
Fix bug in dilated conv for CNTK (#11125)
yanboliang Sep 17, 2018
ef0c95a
Style fixes for enabling PEP8 501 (#11160)
taehoonlee Sep 17, 2018
d6388ed
Grouped common function calls together in the test_callbacks.py. (#11…
gabrieldemarmiesse Sep 17, 2018
6773d96
Grouped conda installations together to speed up the travis build. (#…
gabrieldemarmiesse Sep 17, 2018
03bd870
Style fixes for enabling PEP8 501 (#11161)
taehoonlee Sep 17, 2018
962cc5b
Reduce BN test flakiness with seeding.
fchollet Sep 17, 2018
3184efd
Splitted the convolutional recurrent tests. (#11154)
gabrieldemarmiesse Sep 17, 2018
fed304b
Move package installation on Travis (#11162)
taehoonlee Sep 18, 2018
bb8cc40
Used pytest's autouse to get rid of the @keras_test decorator. (#11170)
gabrieldemarmiesse Sep 18, 2018
4932336
Fix incorrect minimum input size for ResNet50.
fchollet Sep 18, 2018
f534cb0
Merge branch 'master' of github.com:fchollet/keras
fchollet Sep 18, 2018
9a9abba
Fix incorrect minimum input size for applications (#11181)
taehoonlee Sep 20, 2018
f130fa1
Removed completely the keras_test decorator. (#11182)
gabrieldemarmiesse Sep 20, 2018
adfec1e
Refactoring: Added a data_generator to the test_utils.py. (#11153)
gabrieldemarmiesse Sep 20, 2018
e00be3d
Update “why use Keras?” page in the docs.
fchollet Sep 21, 2018
98465b8
Style fixes for enabling PEP8 501 (#11199)
taehoonlee Sep 23, 2018
02bc501
Fix bug in sparse_top_k_categorical_accuracy (#11196)
yanboliang Sep 24, 2018
c4b8049
refactor lagacy/interfaces (#11219)
knightXun Sep 25, 2018
d337273
Added np.tile to reference_operations.py. (#11205)
gabrieldemarmiesse Sep 25, 2018
52e3350
Remove reference to deprecated `random_integers` numpy method.
fchollet Sep 26, 2018
f8763ef
Use tf.nn.relu6 when appropriate in K.relu.
fchollet Sep 26, 2018
810247d
Fix activations tests
fchollet Sep 26, 2018
630a3a8
Use all top MAX_NUM_WORDS words for the embedding matrix. (#11202)
p16i Sep 26, 2018
621ec29
Merge test environments for PEP8 and DOC (#11163)
taehoonlee Sep 26, 2018
3fed40a
Raise ValueError when merge_mode is unknown in Bidirectional#call (#1…
tedyu Sep 27, 2018
32fee92
Add better error message for model.summary() (#11222)
blue-atom Sep 27, 2018
a9e7753
Style fixes for enabling PEP8 501 (#11234)
taehoonlee Sep 27, 2018
3479071
Update per-backend issue templates
fchollet Sep 27, 2018
752ffae
Fix issue templates
fchollet Sep 27, 2018
98e3af1
Update issue templates
fchollet Sep 27, 2018
2ad932b
Update issue templates
fchollet Sep 27, 2018
79bc699
"from sklearn.grid_search import GridSearchCV" is out of date (#11240)
yuanxiaosc Sep 28, 2018
b9ee83c
Fix h5py error "Unable to create attribute (object header message is …
lvapeab Sep 28, 2018
bb31930
This makes Keras compatible with Tensorflow (#11238)
chasebrignac Sep 28, 2018
6fb5069
Consolidate functionality of ThresholdedReLU and LeakyReLU layers int…
yanboliang Sep 28, 2018
91f8e45
Add TF-specific tests for ReLU layer.
fchollet Sep 28, 2018
67d563c
[updated] improve softmax implementation (#11189)
gabrieldemarmiesse Sep 28, 2018
5001a33
Prepare 2.2.3 release.
fchollet Sep 28, 2018
6b6f430
Merge branch 'master' of github.com:fchollet/keras
fchollet Sep 28, 2018
6a1702d
Blacklist TFOptimizer from docs.
fchollet Sep 28, 2018
dd9109d
Fix issues related to keras_preprocessing.
fchollet Sep 28, 2018
3c89933
Add `dilated_conv` into reference operations (#11244)
taehoonlee Sep 29, 2018
4dea0f8
add trig funcs for numpy backend (#11254)
danFromTelAviv Sep 29, 2018
902228e
add ndim (#11257)
danFromTelAviv Sep 30, 2018
af85b95
add more variable initializers to numpy backend (#11261)
danFromTelAviv Sep 30, 2018
f8e80be
Travis was ignoring PEP8 failures. Now fixed. (#11260)
gabrieldemarmiesse Oct 1, 2018
ae6474d
Added a global timeout for the test suite. (#11263)
gabrieldemarmiesse Oct 1, 2018
ecbf73f
[RELNOTES] [P] Write to TensorBoard every x samples. (#11152)
gabrieldemarmiesse Oct 1, 2018
2223143
DOC: Add Conv3DTranspose class to autogen.py. (#11271)
heathhenley Oct 2, 2018
b80f3bd
Gracefully handle legacy Sequential configs (#11280)
GabrielBianconi Oct 2, 2018
2bfd1f2
Add `conv_transpose` into reference operations (#11258)
taehoonlee Oct 3, 2018
a07253d
Fix `fit_generator` for `workers=0` (#11285)
arquolo Oct 3, 2018
5a24ebb
Bug fix: model save when file already exists (#11289)
farizrahman4u Oct 3, 2018
1931e21
Prepare 2.2.4 release.
fchollet Oct 3, 2018
2b963e5
[P] Update tensorflow_backend.py (#11294)
StevenPZChan Oct 4, 2018
6939d91
Improve addition_rnn example's code and comments (#11296)
mkaze Oct 4, 2018
6e00430
Show time spent in the warning of slow progress (#11278)
tedyu Oct 4, 2018
33902e5
Refactor keras/engine/training.py and keras/engine/training_arrays.py…
knightXun Oct 4, 2018
f78b985
Remove useless error message.
fchollet Oct 4, 2018
993a701
Fix PEP8.
fchollet Oct 4, 2018
7875e85
fix the broken format of links and references (#11319)
p16i Oct 7, 2018
d059890
DOC: Closes #11306 multi_gpu_model examples do not show properly (#11…
Cheukting Oct 7, 2018
38328d5
merge keras-mxnet with keras 2.2.4
roywei Oct 8, 2018
02ea847
trigger ci
roywei Oct 8, 2018
19cdd2f
trigger ci
roywei Oct 8, 2018
0902e6c
enable unit tests
roywei Oct 9, 2018
3ff31ce
change to test on mxnet, remove uninstall keras
roywei Oct 9, 2018
f317960
trigger ci
roywei Oct 9, 2018
37bdfe8
trigger ci
roywei Oct 9, 2018
213e71d
trigger ci
roywei Oct 9, 2018
e75b97f
trigger ci
roywei Oct 9, 2018
2f05a6b
update build spec
roywei Oct 9, 2018
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .coveragerc
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ fail_under = 85
show_missing = True
omit =
keras/applications/*
keras/preprocessing/*
keras/datasets/*
keras/layers/cudnn_recurrent.py
keras/legacy/*
Expand Down
17 changes: 17 additions & 0 deletions .github/ISSUE_TEMPLATE/a--tensorflow-backend-users.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
---
name: a) TensorFlow backend users
about: Select this is you're using Keras with the TensorFlow backend (default).

---

Please make sure that the boxes below are checked before you submit your issue.
If your issue is an **implementation question**, please ask your question on [StackOverflow](http://stackoverflow.com/questions/tagged/keras) or [on the Keras Slack channel](https://keras-slack-autojoin.herokuapp.com/) instead of opening a GitHub issue.

Thank you!

- [ ] Check that you are up-to-date with the master branch of Keras. You can update with:
`pip install git+git://github.com/keras-team/keras.git --upgrade --no-deps`

- [ ] Check that your version of TensorFlow is up-to-date. The installation instructions can be found [here](https://www.tensorflow.org/get_started/os_setup).

- [ ] Provide a link to a GitHub Gist of a Python script that can reproduce your issue (or just copy the script here if it is short).
18 changes: 18 additions & 0 deletions .github/ISSUE_TEMPLATE/b--theano-backend-users.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
---
name: b) Theano backend users
about: Select this if you're using Keras with the Theano backend.

---

Please make sure that the boxes below are checked before you submit your issue.
If your issue is an **implementation question**, please ask your question on [StackOverflow](http://stackoverflow.com/questions/tagged/keras) or [on the Keras Slack channel](https://keras-slack-autojoin.herokuapp.com/) instead of opening a GitHub issue.

Thank you!

- [ ] Check that you are up-to-date with the master branch of Keras. You can update with:
`pip install git+git://github.com/keras-team/keras.git --upgrade --no-deps`

- [ ] Check that you are up-to-date with the master branch of Theano. You can update with:
`pip install git+git://github.com/Theano/Theano.git --upgrade --no-deps`

- [ ] Provide a link to a GitHub Gist of a Python script that can reproduce your issue (or just copy the script here if it is short).
17 changes: 17 additions & 0 deletions .github/ISSUE_TEMPLATE/c--cntk-backend-users.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
---
name: c) CNTK backend users
about: Select this if you're using Keras with the CNTK backend.

---

Please make sure that the boxes below are checked before you submit your issue.
If your issue is an **implementation question**, please ask your question on [StackOverflow](http://stackoverflow.com/questions/tagged/keras) or [on the Keras Slack channel](https://keras-slack-autojoin.herokuapp.com/) instead of opening a GitHub issue.

Thank you!

- [ ] Check that you are up-to-date with the master branch of Keras. You can update with:
`pip install git+git://github.com/keras-team/keras.git --upgrade --no-deps`

- [ ] Check that your version of CNTK is up-to-date.

- [ ] Provide a link to a GitHub Gist of a Python script that can reproduce your issue (or just copy the script here if it is short).
57 changes: 21 additions & 36 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -1,14 +1,15 @@
sudo: required
dist: trusty
language: python
cache:
directories:
- $HOME/.theano
matrix:
include:
- python: 2.7
env: KERAS_BACKEND=tensorflow TEST_MODE=PEP8
- python: 2.7
env: KERAS_BACKEND=tensorflow TEST_MODE=INTEGRATION_TESTS
- python: 3.6
env: KERAS_BACKEND=tensorflow TEST_MODE=DOC
env: KERAS_BACKEND=tensorflow TEST_MODE=PEP8_DOC
- python: 2.7
env: KERAS_BACKEND=tensorflow
- python: 3.6
Expand All @@ -21,10 +22,6 @@ matrix:
env: KERAS_BACKEND=cntk PYTHONWARNINGS=ignore
- python: 3.6
env: KERAS_BACKEND=cntk PYTHONWARNINGS=ignore
- python: 2.7
env: KERAS_BACKEND=mxnet PYTHONWARNINGS=ignore
- python: 3.6
env: KERAS_BACKEND=mxnet PYTHONWARNINGS=ignore
install:
# code below is taken from http://conda.pydata.org/docs/travis.html
# We do this conditionally because it saves us some downloading if the
Expand All @@ -42,40 +39,33 @@ install:
# Useful for debugging any issues with conda
- conda info -a

- conda create -q -n test-environment python=$TRAVIS_PYTHON_VERSION nose scipy matplotlib pandas pytest h5py
- travis_retry conda create -q -n test-environment python=$TRAVIS_PYTHON_VERSION
- source activate test-environment
- pip install --only-binary=numpy,scipy numpy nose scipy matplotlib h5py theano
- travis_retry pip install --only-binary=numpy,scipy,pandas numpy nose scipy matplotlib h5py theano pytest pytest-pep8 pandas
- pip install keras_applications keras_preprocessing
- conda install mkl mkl-service

# set library path
- export LD_LIBRARY_PATH=$HOME/miniconda/envs/test-environment/lib/:$LD_LIBRARY_PATH

# install PIL for preprocessing tests
- if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then
conda install pil;
else
conda install Pillow;
# install PIL for preprocessing tests (they are integration tests).
- if [[ "$TEST_MODE" == "INTEGRATION_TESTS" ]] || [[ "$TEST_MODE" == "PEP8_DOC" ]]; then
if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then
export PIL=Pil;
else
export PIL=Pillow;
fi
fi

# install pydot for visualization tests
- travis_retry conda install mkl mkl-service pydot graphviz $PIL

- pip install -e .[tests]

# install TensorFlow (CPU version).
- pip install tensorflow==1.7

# install Apache MXNet (CPU version).
- pip install mxnet
- pip install --upgrade numpy

# install cntk
- if [[ "$TRAVIS_PYTHON_VERSION" == "2.7" ]]; then
pip install https://cntk.ai/PythonWheel/CPU-Only/cntk-2.5.1-cp27-cp27mu-linux_x86_64.whl;
elif [[ "$TRAVIS_PYTHON_VERSION" == "3.6" ]]; then
pip install https://cntk.ai/PythonWheel/CPU-Only/cntk-2.5.1-cp36-cp36m-linux_x86_64.whl;
fi
- pip install tensorflow==1.9

# install pydot for visualization tests
- conda install pydot graphviz
# install cntk
- pip install cntk

# exclude different backends to measure a coverage for the designated backend only
- if [[ "$KERAS_BACKEND" != "tensorflow" ]]; then
Expand All @@ -87,9 +77,6 @@ install:
- if [[ "$KERAS_BACKEND" != "cntk" ]]; then
echo ' keras/backend/cntk_backend.py' >> .coveragerc;
fi
- if [[ "$KERAS_BACKEND" != "mxnet" ]]; then
echo ' keras/backend/mxnet_backend.py' >> .coveragerc;
fi

# detect whether core files are changed or not
- export CORE_CHANGED=False;
Expand Down Expand Up @@ -118,10 +105,8 @@ script:
- echo -e "Running tests with the following config:\n$(cat ~/.keras/keras.json)"
- if [[ "$TEST_MODE" == "INTEGRATION_TESTS" ]]; then
PYTHONPATH=$PWD:$PYTHONPATH py.test tests/integration_tests;
elif [[ "$TEST_MODE" == "PEP8" ]]; then
PYTHONPATH=$PWD:$PYTHONPATH py.test --pep8 -m pep8 -n0;
elif [[ "$TEST_MODE" == "DOC" ]]; then
PYTHONPATH=$PWD:$PYTHONPATH py.test tests/test_documentation.py;
elif [[ "$TEST_MODE" == "PEP8_DOC" ]]; then
PYTHONPATH=$PWD:$PYTHONPATH py.test --pep8 -m pep8 -n0 && py.test tests/test_documentation.py;
else
PYTHONPATH=$PWD:$PYTHONPATH py.test tests/ --ignore=tests/integration_tests --ignore=tests/test_documentation.py --ignore=tests/keras/legacy/layers_test.py --cov-config .coveragerc --cov=keras tests/;
fi
5 changes: 3 additions & 2 deletions docker/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -41,8 +41,8 @@ RUN conda install -y python=${python_version} && \
pip install --upgrade pip && \
pip install \
sklearn_pandas \
tensorflow-gpu && \
pip install https://cntk.ai/PythonWheel/GPU/cntk-2.1-cp36-cp36m-linux_x86_64.whl && \
tensorflow-gpu \
cntk-gpu && \
conda install \
bcolz \
h5py \
Expand All @@ -52,6 +52,7 @@ RUN conda install -y python=${python_version} && \
notebook \
Pillow \
pandas \
pydot \
pygpu \
pyyaml \
scikit-learn \
Expand Down
2 changes: 2 additions & 0 deletions docs/autogen.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,6 +91,7 @@

EXCLUDE = {
'Optimizer',
'TFOptimizer',
'Wrapper',
'get_session',
'set_session',
Expand Down Expand Up @@ -173,6 +174,7 @@
layers.SeparableConv2D,
layers.Conv2DTranspose,
layers.Conv3D,
layers.Conv3DTranspose,
layers.Cropping1D,
layers.Cropping2D,
layers.Cropping3D,
Expand Down
42 changes: 23 additions & 19 deletions docs/templates/applications.md
Original file line number Diff line number Diff line change
Expand Up @@ -172,17 +172,19 @@ model = InceptionV3(input_tensor=input_tensor, weights='imagenet', include_top=T

| Model | Size | Top-1 Accuracy | Top-5 Accuracy | Parameters | Depth |
| ----- | ----: | --------------: | --------------: | ----------: | -----: |
| [Xception](#xception) | 88 MB | 0.790 | 0.945| 22,910,480 | 126 |
| [VGG16](#vgg16) | 528 MB| 0.715 | 0.901 | 138,357,544 | 23
| [VGG19](#vgg19) | 549 MB | 0.727 | 0.910 | 143,667,240 | 26
| [ResNet50](#resnet50) | 99 MB | 0.759 | 0.929 | 25,636,712 | 168
| [InceptionV3](#inceptionv3) | 92 MB | 0.788 | 0.944 | 23,851,784 | 159 |
| [InceptionResNetV2](#inceptionresnetv2) | 215 MB | 0.804 | 0.953 | 55,873,736 | 572 |
| [MobileNet](#mobilenet) | 17 MB | 0.665 | 0.871 | 4,253,864 | 88
| [DenseNet121](#densenet) | 33 MB | 0.745 | 0.918 | 8,062,504 | 121
| [DenseNet169](#densenet) | 57 MB | 0.759 | 0.928 | 14,307,880 | 169
| [DenseNet201](#densenet) | 80 MB | 0.770 | 0.933 | 20,242,984 | 201

| [Xception](#xception) | 88 MB | 0.790 | 0.945 | 22,910,480 | 126 |
| [VGG16](#vgg16) | 528 MB | 0.713 | 0.901 | 138,357,544 | 23 |
| [VGG19](#vgg19) | 549 MB | 0.713 | 0.900 | 143,667,240 | 26 |
| [ResNet50](#resnet50) | 99 MB | 0.749 | 0.921 | 25,636,712 | 168 |
| [InceptionV3](#inceptionv3) | 92 MB | 0.779 | 0.937 | 23,851,784 | 159 |
| [InceptionResNetV2](#inceptionresnetv2) | 215 MB | 0.803 | 0.953 | 55,873,736 | 572 |
| [MobileNet](#mobilenet) | 16 MB | 0.704 | 0.895 | 4,253,864 | 88 |
| [MobileNetV2](#mobilenetv2) | 14 MB | 0.713 | 0.901 | 3,538,984 | 88 |
| [DenseNet121](#densenet) | 33 MB | 0.750 | 0.923 | 8,062,504 | 121 |
| [DenseNet169](#densenet) | 57 MB | 0.762 | 0.932 | 14,307,880 | 169 |
| [DenseNet201](#densenet) | 80 MB | 0.773 | 0.936 | 20,242,984 | 201 |
| [NASNetMobile](#nasnet) | 23 MB | 0.744 | 0.919 | 5,326,716 | - |
| [NASNetLarge](#nasnet) | 343 MB | 0.825 | 0.960 | 88,949,818 | - |

The top-1 and top-5 accuracy refers to the model's performance on the ImageNet validation dataset.

Expand Down Expand Up @@ -269,7 +271,7 @@ The default input size for this model is 224x224.
has to be `(224, 224, 3)` (with `'channels_last'` data format)
or `(3, 224, 224)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 48.
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
- pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
Expand Down Expand Up @@ -324,7 +326,7 @@ The default input size for this model is 224x224.
has to be `(224, 224, 3)` (with `'channels_last'` data format)
or `(3, 224, 224)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 48.
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
- pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
Expand Down Expand Up @@ -381,7 +383,7 @@ The default input size for this model is 224x224.
has to be `(224, 224, 3)` (with `'channels_last'` data format)
or `(3, 224, 224)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 197.
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
- pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
Expand Down Expand Up @@ -436,7 +438,7 @@ The default input size for this model is 299x299.
has to be `(299, 299, 3)` (with `'channels_last'` data format)
or `(3, 299, 299)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 139.
and width and height should be no smaller than 75.
E.g. `(150, 150, 3)` would be one valid value.
- pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
Expand Down Expand Up @@ -491,7 +493,7 @@ The default input size for this model is 299x299.
has to be `(299, 299, 3)` (with `'channels_last'` data format)
or `(3, 299, 299)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 139.
and width and height should be no smaller than 75.
E.g. `(150, 150, 3)` would be one valid value.
- pooling: Optional pooling mode for feature extraction
when `include_top` is `False`.
Expand Down Expand Up @@ -618,9 +620,11 @@ The default input size for this model is 224x224.
to use as image input for the model.
- input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `channels_last` data format)
or `(3, 224, 224)` (with `channels_first` data format).
It should have exactly 3 inputs channels.
has to be `(224, 224, 3)` (with `'channels_last'` data format)
or `(3, 224, 224)` (with `'channels_first'` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 32.
E.g. `(200, 200, 3)` would be one valid value.
- pooling: optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
Expand Down
6 changes: 3 additions & 3 deletions docs/templates/datasets.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ from keras.datasets import cifar10

- __Returns:__
- 2 tuples:
- __x_train, x_test__: uint8 array of RGB image data with shape (num_samples, 3, 32, 32).
- __x_train, x_test__: uint8 array of RGB image data with shape (num_samples, 3, 32, 32) or (num_samples, 32, 32, 3) based on the `image_data_format` backend setting of either `channels_first` or `channels_last` respectively.
- __y_train, y_test__: uint8 array of category labels (integers in range 0-9) with shape (num_samples,).


Expand All @@ -34,7 +34,7 @@ from keras.datasets import cifar100

- __Returns:__
- 2 tuples:
- __x_train, x_test__: uint8 array of RGB image data with shape (num_samples, 3, 32, 32).
- __x_train, x_test__: uint8 array of RGB image data with shape (num_samples, 3, 32, 32) or (num_samples, 32, 32, 3) based on the `image_data_format` backend setting of either `channels_first` or `channels_last` respectively.
- __y_train, y_test__: uint8 array of category labels with shape (num_samples,).

- __Arguments:__
Expand Down Expand Up @@ -206,4 +206,4 @@ from keras.datasets import boston_housing
- __test_split__: fraction of the data to reserve as test set.

- __Returns:__
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
8 changes: 4 additions & 4 deletions docs/templates/getting-started/faq.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
- [How can I use HDF5 inputs with Keras?](#how-can-i-use-hdf5-inputs-with-keras)
- [Where is the Keras configuration file stored?](#where-is-the-keras-configuration-file-stored)
- [How can I obtain reproducible results using Keras during development?](#how-can-i-obtain-reproducible-results-using-keras-during-development)
- [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-HDF5-or-h5py-to-save-my-models-in-Keras)
- [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-hdf5-or-h5py-to-save-my-models-in-keras)

---

Expand Down Expand Up @@ -149,7 +149,7 @@ You can then use `keras.models.load_model(filepath)` to reinstantiate your model
`load_model` will also take care of compiling the model using the saved training configuration
(unless the model was never compiled in the first place).

Please also see [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-HDF5-or-h5py-to-save-my-models-in-Keras) for instructions on how to install `h5py`.
Please also see [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-hdf5-or-h5py-to-save-my-models-in-keras) for instructions on how to install `h5py`.

Example:

Expand Down Expand Up @@ -210,7 +210,7 @@ If you need to load weights into a *different* architecture (with some layers in
model.load_weights('my_model_weights.h5', by_name=True)
```

Please also see [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-HDF5-or-h5py-to-save-my-models-in-Keras) for instructions on how to install `h5py`.
Please also see [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-hdf5-or-h5py-to-save-my-models-in-keras) for instructions on how to install `h5py`.

For example:

Expand Down Expand Up @@ -517,7 +517,7 @@ with h5py.File('input/file.hdf5', 'r') as f:
model.predict(x_data)
```

Please also see [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-HDF5-or-h5py-to-save-my-models-in-Keras) for instructions on how to install `h5py`.
Please also see [How can I install HDF5 or h5py to save my models in Keras?](#how-can-i-install-hdf5-or-h5py-to-save-my-models-in-keras) for instructions on how to install `h5py`.

---

Expand Down
Loading