-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnumbers.scm
560 lines (467 loc) · 15.8 KB
/
numbers.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
;;; This file is part of Integer Sequences, a library for recreational
;;; number theory in MIT Scheme.
;;; Copyright 2007-2009 Alexey Radul.
;;;
;;; Integer Sequences is free software; you can redistribute it and/or
;;; modify it under the terms of the GNU Affero General Public License
;;; as published by the Free Software Foundation; either version 3 of
;;; the License, or (at your option) any later version.
;;;
;;; This code is distributed in the hope that it will be useful,
;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;;; GNU General Public License for more details.
;;;
;;; You should have received a copy of the GNU Affero General Public
;;; License along with Integer Sequences; if not, see
;;; <http://www.gnu.org/licenses/>.
(declare (usual-integrations))
;;;; Some integer sequences
;;; These are definitions for a bunch of integer sequences and the
;;; helpers needed to compute them; see numbers-meta.scm for a
;;; description for the sequence facilities and, in particular, the
;;; integer-sequence macro that defines them.
;;; You will notice in this file that some procedures are defined
;;; twice. If so, the first is meant to be read definitionally and
;;; the second implementationally: one defines the meaning of the
;;; name, whereas the other provides a decent mechanism of computing
;;; whatever the first defines. The latter will, of course, be the
;;; one executed, because its definition clobbers the former in the
;;; Scheme image.
;;;; Basics
(define (increment n)
(+ n 1))
(define (decrement n)
(- n 1))
(define (sum numbers)
(apply + numbers))
(define (product numbers)
(apply * numbers))
(define (even k) (* 2 k))
(define (even-root n) (/ n 2))
; The system even? is exactly what I want
(integer-sequence even generator inverter tester)
(define (odd k) (- (* 2 k) 1))
(define (odd-root n) (/ (+ n 1) 2))
; The system odd? is exactly what I want
(integer-sequence odd generator inverter tester)
;;;; Oddity
(define (the-lucky-numbers)
(define (stream-filter-indexed predicate stream)
(let recur ((stream stream)
(index 0))
(lazy
(if (stream-pair? stream)
(let ((item (stream-car stream))
(recur (lambda () (recur (stream-cdr stream) (+ index 1)))))
(if (predicate item index)
(stream-cons item (recur))
(recur)))
stream-nil))))
(define (check-luck stream index-of-luck)
(let ((lucky (stream-car stream)))
(stream-cons lucky
(check-luck
(stream-filter-indexed
(lambda (elt i)
(not (divides? lucky (+ i 1 index-of-luck))))
(stream-cdr stream))
(+ index-of-luck 1)))))
;; One and two are special-cased in the definition to produce an
;; infinite sequence of lucky numbers.
(stream-cons 1 (check-luck (stream-cdr (the-odds)) 2)))
(integer-sequence lucky-number streamer)
;;;; Combinatorics
(define (factorial n)
(if (= n 0)
1
(* n (factorial (- n 1)))))
(define (factorial n)
(let loop ((n n)
(accum 1))
(if (= n 0)
accum
(loop (- n 1) (* accum n)))))
(integer-sequence factorial generator)
(define (choose k n)
"Choose k out of n"
(/ (factorial n)
(* (factorial k)
(factorial (- n k)))))
(define (choose k n)
"Choose k out of n"
;; This version comprises three performance transformations. First,
;; canceling the larger factorial in the denominator saves a bunch
;; of multiplying. Second, interleaving multiplications with
;; divisions keeps computations out of bignums more. Third,
;; counting the denominator up (as opposed to down) avoids rational
;; arithmetic (because the intermediate answer is always some
;; binomial coefficient).
(if (> k (/ n 2))
(choose (- n k) n)
(let loop ((answer 1)
(next-factor (+ (- n k) 1))
(next-divisor 1))
(if (> next-divisor k)
answer
(loop (/ (* answer next-factor) next-divisor)
(+ next-factor 1)
(+ next-divisor 1))))))
(define (catalan k)
(/ (choose k (* 2 k)) (+ k 1)))
(integer-sequence catalan generator)
(define (distribute num-objects num-buckets)
"Distribute exactly n identical objects among k buckets."
;; Consider a sequence of n+k-1 slots, exactly k-1 of which must be
;; bucket separators, and the remaining n must be the objects.
;; Distributions of the objects into the buckets are in one-to-one
;; correspondence with such sequences. There are (choose k-1 out of
;; n+k-1) such sequences.
(choose (- num-buckets 1) (+ num-objects (- num-buckets 1))))
;;;; Fibonacci
(define (fibonacci n)
(cond ((> n 0) (fibonacci+ n))
((= n 0) 0)
((< n 0) (* -1
(fibonacci+ (- n))
(expt -1 (- n))))))
(integer-sequence fibonacci generator)
(define (fibonacci+ n)
(let loop ((a 1) (b 1) (count 1))
(if (<= n count)
a
(loop b (+ a b) (+ count 1)))))
;; This version, using faster matrix exponentiation is about 6.5 times
;; faster than fibonacci+, but I'm not sure that justifies the extra
;; complexity.
(define (fibonacci+by-matrix n)
(define (mat-* mat1 mat2)
(let ((a1 (car mat1))
(b1 (cadr mat1))
(c1 (caddr mat1))
(d1 (cadddr mat1))
(a2 (car mat2))
(b2 (cadr mat2))
(c2 (caddr mat2))
(d2 (cadddr mat2)))
(list (+ (* a1 a2) (* b1 c2))
(+ (* a1 b2) (* b1 d2))
(+ (* c1 a2) (* d1 c2))
(+ (* c1 b2) (* d1 d2)))))
(define (mat-expt mat n)
(cond ((= 0 n) (list 1 0 0 1))
((= 1 n) mat)
((even? n)
(let ((ans (mat-expt mat (/ n 2))))
(mat-* ans ans)))
((odd? n)
(mat-* (mat-expt mat (- n 1))
mat))))
(cadr (mat-expt (list 0 1 1 1) n)))
;;;; Factorizations
(define (divides? d n)
(= 0 (remainder n d)))
(define (smallest-divisor number #!optional start-from)
(define (helper number start-from)
(cond ((divides? start-from number)
start-from)
((> (* start-from start-from) number)
number)
(else
(helper number (+ start-from 1)))))
(if (default-object? start-from)
(set! start-from 2))
(helper number start-from))
(define (prime? number)
(and (> number 1)
(= number (smallest-divisor number))))
(integer-sequence prime tester)
(define (composite? number)
(and (not (= 1 number))
(not (prime? number))))
(integer-sequence composite tester)
(define (semiprime? number)
(= 2 (length (prime-factors number))))
(integer-sequence semiprime tester)
(define (twin-prime? number)
(and (prime? number)
(or (prime? (+ number 2))
(prime? (- number 2)))))
(integer-sequence twin-prime tester)
(define (square-free? number)
(let ((factors (prime-factors number)))
(= (length factors) (length (delete-duplicates factors)))))
(integer-sequence square-free tester)
(define (powerful? number)
(define (all-at-least-twice lst)
(if (null? lst)
#t
(count (cdr lst) (car lst) 1)))
(define (count lst item ct)
(if (and (pair? lst) (= (car lst) item))
(count (cdr lst) item (+ ct 1))
(if (>= ct 2)
(all-at-least-twice lst)
#f)))
(all-at-least-twice (prime-factors number)))
(integer-sequence powerful tester)
(define (mersenne k)
(- (expt 2 (prime k)) 1))
(integer-sequence mersenne generator)
(define (primorial number)
(product (stream-take->list (the-primes) number)))
(integer-sequence primorial generator)
(define (compositorial number)
(product (stream-take->list (the-composites) number)))
(integer-sequence compositorial generator)
;;;; Divisors
(define (prime-factors number)
(define (helper number min-divisor)
(if (<= number 1)
'()
(let ((div (smallest-divisor number min-divisor)))
(cons div (helper (/ number div) div)))))
(helper number 2))
(define (all-combinations lst #!optional same-combination)
(if (default-object? same-combination)
(set! same-combination eq?))
(if (null? lst)
'(())
(let ((subcombinations (all-combinations (cdr lst))))
(delete-duplicates
(append subcombinations
(map (lambda (l) (cons (car lst) l)) subcombinations))
same-combination))))
(define (divisors n)
(sort (map product (all-combinations (prime-factors n) equal?)) <))
(define (proper-divisors n)
(filter (lambda (d) (not (= n d)))
(divisors n)))
(define (sigma number)
(sum (proper-divisors number)))
(define (perfect? number)
(= number (sigma number)))
(integer-sequence perfect tester)
(define (abundant? number)
(< number (sigma number)))
(integer-sequence abundant tester)
(define (deficient? number)
(> number (sigma number)))
(integer-sequence deficient tester)
(define (amicable? number)
(and (> number 1)
(let ((sum (sigma number)))
(and (not (= number sum))
(= number (sigma sum))))))
(integer-sequence amicable tester)
(define (aspiring? number)
(and (not (perfect? number))
(let loop ((number number)
(next (sigma number))
(count 0))
(cond ((= 1 number)
#f)
((= number next)
#t)
;; TODO Is there a better way?
((or (> count 100) (> next 100000))
#f)
(else
(loop next (sigma next) (+ count 1)))))))
(integer-sequence aspiring tester)
;; As it is, both of these are too slow to be really useful.
#|
(define (untouchable? number)
(not (member number (map sigma (iota (square number))))))
(define (untouchable? number)
;; This version short-circuits the sum-of-divisors computations
(and (> number 1)
(let ((bound (square number)))
(let loop ((try 1))
(cond ((= number (sigma try)) #f)
((>= try bound) #t)
(else (loop (+ try 1))))))))
(integer-sequence untouchable tester)
(define (weird? number)
(and (abundant? number)
(not (member number (map sum (all-combinations (proper-divisors number))) =))))
(integer-sequence weird tester)
|#
;;;; Figurate numbers
(define (square number)
(* number number))
(integer-sequence square generator)
(define (cube number)
(* number number number))
(integer-sequence cube generator)
(define (triangle n)
(/ (* n (+ n 1)) 2))
(integer-sequence triangle generator)
(define (pentagon k)
(* k (- (* 3 k) 1) 1/2))
(integer-sequence pentagon generator)
(define (hexagon k)
(* k (- (* 2 k) 1)))
(integer-sequence hexagon generator)
(define (heptagon k)
(* k (- (* 5 k) 3) 1/2))
(integer-sequence heptagon generator)
(define (octagon k)
(* k (- (* 3 k) 2)))
(integer-sequence octagon generator)
(define (nonagon k)
(* k (- (* 7 k) 5) 1/2))
(integer-sequence nonagon generator)
(define (decagon k)
(* k (- (* 4 k) 3)))
(integer-sequence decagon generator)
(define (tetrahedron k)
(* 1/6 k (+ k 1) (+ k 2)))
(integer-sequence tetrahedron generator)
(define (pronic n)
(* n (+ 1 n)))
(integer-sequence pronic generator)
(define (lazy-caterer k)
(+ 1 (triangle k)))
(integer-sequence lazy-caterer generator)
(define (cake k)
(+ (choose 3 k) (choose 2 k) (choose 1 k) (choose 0 k)))
(define (cake k)
(/ (+ (expt k 3) (* 5 k) 6) 6))
(integer-sequence cake generator)
;;;; Digits
(define (number->digits number #!optional base)
(define (number->reverse-digits number)
(if (< number base)
(list number)
(cons (remainder number base)
(number->reverse-digits (quotient number base)))))
(if (default-object? base) (set! base 10))
(reverse (number->reverse-digits number)))
(define digits number->digits)
(define (binary-digits n)
(digits n 2))
(define number->bits binary-digits)
(define (digits->number digits #!optional base)
(if (default-object? base)
(set! base 10))
(let loop ((digits digits)
(total 0))
(if (null? digits)
total
(loop (cdr digits)
(+ (car digits) (* base total))))))
(define (automorphic? number)
(define (is-suffix-of? short long)
(equal? short (drop long (- (length long) (length short)))))
(is-suffix-of? (digits number) (digits (square number))))
(integer-sequence automorphic tester)
(define (pandigital? number)
(= 10 (length (delete-duplicates (number->digits number)))))
(integer-sequence pandigital tester)
(define (bitcount number)
(length (filter (lambda (bit) (= bit 1)) (number->bits number))))
(define (evil? number)
(= 0 (remainder (bitcount number) 2)))
(integer-sequence evil tester)
(define (odious? number)
(= 1 (remainder (bitcount number) 2)))
(integer-sequence odious tester)
(define (multidigit? number)
(> (length (number->digits number)) 1))
(define (multidigit? number)
(>= number 10))
(integer-sequence multidigit tester)
(define (apocalyptic-power? number)
(substring? "666" (number->string (expt 2 number))))
(integer-sequence apocalyptic-power tester)
(define happy-number?
;; The trick to computing happy numbers reasonably is to notice that
;; after a certain bound, the sum of squares of digits operation
;; cannot increase the number. This means that all cycles involve
;; reasonably small integers, and detection thereof can be cached.
(let* ((bound 200) ; (step k) < (step 199) < 199
(cache (make-vector bound)))
(define (step n)
(sum (map square (digits n))))
(define (state n)
(let ((cached (vector-ref cache n)))
(cond ((or (eq? 'happy cached)
(eq? 'sad cached))
cached)
((eq? 'pending cached)
(vector-set! cache n 'sad)
'sad)
((= 1 n)
(vector-set! cache n 'happy)
'happy)
(else
(vector-set! cache n 'pending)
(let ((answer (state (step n))))
(vector-set! cache n answer)
answer)))))
(lambda (number)
(if (>= number bound)
(happy-number? (step number))
(eq? 'happy (state number))))))
(integer-sequence happy-number tester)
(define (repunit? number)
(every (lambda (x) (= x 1)) (number->digits number)))
(define (repunit n)
(/ (- (expt 10 n) 1) 9))
(integer-sequence repunit generator)
(define (repdigit? number)
(= 1 (length (delete-duplicates (number->digits number)))))
(integer-sequence repdigit tester)
(define (narcissistic? number)
(let* ((dig (digits number))
(k (length dig)))
(= number (sum (map (lambda (d) (expt d k)) dig)))))
(integer-sequence narcissistic tester)
(define (undulating? number)
(define (undulating? a b lst)
(cond ((null? lst)
#t)
((not (= a (car lst)))
#f)
(else (undulating? b a (cdr lst)))))
(let ((digits (number->digits number)))
(and (> (length digits) 2)
(undulating? (car digits) (cadr digits) (cddr digits)))))
(integer-sequence undulating tester)
(define (palindrome? number)
(equal? (number->digits number)
(reverse (number->digits number))))
(integer-sequence palindrome tester)
;;;; More than just digits
(define (emirp? number)
(and (prime? number)
(prime? (digits->number (reverse (number->digits number))))
(not (palindrome? number))))
(integer-sequence emirp tester)
(define (emirpimes? number)
(and (semiprime? number)
(semiprime? (digits->number (reverse (number->digits number))))
(not (palindrome? number))))
(integer-sequence emirpimes tester)
(define (upside-down-glyph digit)
(let ((pair (assoc digit '((0 . 0) (1 . 1) (6 . 9) (8 . 8) (9 . 6)))))
(and pair (cdr pair))))
(define (strobogrammatic? number)
(equal? (number->digits number)
(map upside-down-glyph (reverse (number->digits number)))))
(integer-sequence strobogrammatic tester)
(define (smith? number)
(and (composite? number)
(= (sum (number->digits number))
(sum (map (lambda (p)
(sum (number->digits p)))
(prime-factors number))))))
(integer-sequence smith tester)
(define (hoax? number)
(and (composite? number)
(= (sum (number->digits number))
(sum (map (lambda (p)
(sum (number->digits p)))
(delete-duplicates (prime-factors number)))))))
(integer-sequence hoax tester)