-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
97 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
# Type Theory in Type Theory using Quotient Inductive Types | ||
|
||
[Link](https://www.cs.nott.ac.uk/~psztxa/publ/tt-in-tt.pdf) to the paper. | ||
|
||
Here's a self-contained full definition. | ||
|
||
## Prelude | ||
|
||
```aya | ||
prim I | ||
prim Path | ||
prim coe | ||
variable A B : Type | ||
def infix = (a b : A) : Type => Path (\i => A) a b | ||
def refl {a : A} : a = a => \i => a | ||
def pmap (f : A -> B) {a b : A} (p : a = b) : f a = f b => \i => f (p i) | ||
// Copied from Carlo Angiuli's thesis | ||
def transport {a b : A} (B : A -> Type) (p : a = b) (x : B a) : B b | ||
=> coe 0 1 (\y => B (p y)) x | ||
``` | ||
|
||
## Context | ||
|
||
```aya | ||
open inductive Con : Type | ||
| • | ||
| infix ▷ (Γ : Con) (Ty Γ) | ||
``` | ||
|
||
## Types | ||
|
||
```aya | ||
open inductive Ty (Γ : Con) : Type | ||
| U | ||
| Π (A : Ty Γ) (B : Ty (Γ ▷ A)) | ||
| El (A : Tm Γ U) | ||
| Subst {Δ : Con} (Ty Δ) (s : Γ << Δ) | ||
| SubId {A : Ty Γ} : Subst A (id refl) = A | ||
| SubAss {Δ Θ : Con} {A : Ty Θ} {θ : Γ << Δ} {δ : Δ << Θ} | ||
: Subst (Subst A δ) θ = Subst A (δ ∘ θ) | ||
| SubU {Δ : Con} (δ : Γ << Δ) : Subst U δ = U | ||
| SubEl {Δ : Con} {δ : Γ << Δ} {a : Tm Δ U} | ||
: Subst (El a) δ = El (transport (Tm _) (SubU δ) (sub a)) | ||
| SubΠ {Δ : Con} (σ : Γ << Δ) {A : Ty Δ} {B : Ty (Δ ▷ A)} | ||
: Subst (Π A B) σ = Π (Subst A σ) (Subst B (ext σ A)) | ||
``` | ||
|
||
The `ext`{} operator corresponds to the ↑ operator in the paper: | ||
|
||
```aya | ||
def ext {Γ Δ : Con} (δ : Γ << Δ) (A : Ty Δ) : Γ ▷ Subst A δ << Δ ▷ A => | ||
δ ∘ π₁ (id refl) ∷ transport (Tm _) SubAss (π₂ (id refl)) | ||
``` | ||
|
||
## Substitution objects | ||
|
||
```aya | ||
open inductive infix << (Γ : Con) (Δ : Con) : Type | ||
tighter = looser ▷ | ||
| _, • => ε | ||
| _, Δ' ▷ A => infixr ∷ (δ : Γ << Δ') (Tm Γ (Subst A δ)) tighter = | ||
| infix ∘ {Θ : Con} (Θ << Δ) (Γ << Θ) tighter = ∷ | ||
| π₁ {A : Ty Δ} (Γ << Δ ▷ A) | ||
| id (Γ = Δ) | ||
| idl• {s : Γ << Δ} : id refl ∘ s = s | ||
| idr• {s : Γ << Δ} : s ∘ id refl = s | ||
| ass {Θ Ξ : Con} {ν : Γ << Ξ} {δ : Ξ << Θ} {σ : Θ << Δ} | ||
: (σ ∘ δ) ∘ ν = σ ∘ (δ ∘ ν) | ||
| π₁β {δ : Γ << Δ} {A : Ty Δ} (t : Tm Γ (Subst A δ)) : π₁ (δ ∷ t) = δ | ||
| _, _ ▷ _ => πη {δ : Γ << Δ} : (π₁ δ ∷ π₂ δ) = δ | ||
| _, Δ' ▷ A => ∷∘ {Θ : Con} {σ : Θ << Δ'} {δ : Γ << Θ} {t : Tm Θ (Subst A σ)} | ||
: (σ ∷ t) ∘ δ = (σ ∘ δ) ∷ transport (Tm _) SubAss (sub t) | ||
| _, • => εη {δ : Γ << •} : δ = ε | ||
``` | ||
|
||
## Terms | ||
|
||
```aya | ||
open inductive Tm (Γ : Con) (Ty Γ) : Type | ||
| _, Π A B => λ (Tm (Γ ▷ A) B) | ||
| Γ' ▷ A, B => app (Tm Γ' (Π A B)) | ||
| _, Subst A δ => sub (Tm _ A) | ||
| _, Subst A (π₁ δ) => π₂ (Γ << _ ▷ A) | ||
| _, Subst B δ as A => π₂β {Δ : Con} (t : Tm Γ A) | ||
: transport (Tm _) (pmap (Subst B) (π₁β t)) (π₂ (δ ∷ t)) = t | ||
| _ ▷ _, A => Πβ (f : Tm Γ A) : app (λ f) = f | ||
| _, Π _ _ as A => Πη (f : Tm Γ A) : λ (app f) = f | ||
| _, Π A B => subλ {Δ : Con} {σ : Γ << Δ} {A' : Ty Δ} {B' : Ty (Δ ▷ A')} | ||
(fording : Π (Subst A' σ) (Subst B' _) = Π A B) {t : Tm (Δ ▷ A') B'} | ||
: let ford := transport (Tm _) fording | ||
in ford (transport (Tm _) (SubΠ σ) (sub (λ t))) | ||
= ford (λ (sub t)) | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,4 @@ | ||
blog/extended-pruning.md | ||
blog/tt-in-tt-qiit.md | ||
guide/haskeller-tutorial.md | ||
guide/prover-tutorial.md |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters